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Abstract

Identifying optimal catalyst compositions and reaction conditions is central to
catalyst discovery, but remains a formidable challenge due to the vast multidi-
mensional design spaces encompassing both continuous and categorical variables.
In this work, we present a Bayesian optimization framework for accelerated
catalyst discovery by jointly optimizing discrete and continuous experimental
variables in a single model. Our approach introduces a unified Gaussian Pro-
cess surrogate with a novel spectral mixture kernel combining Gaussian and
Cauchy components. By leveraging Bochner’s theorem, this kernel captures both
smooth local trends and abrupt, non-smooth patterns in the continuous param-
eter space, which in turn reduces the modeling burden on the discrete variable
side. Discrete choices, such as catalyst compositions and supports, are efficiently
navigated via a trust-region strategy based on Hamming distance, allowing early
broad exploration followed by focused refinement. In the virtual experimenta-
tions of important catalytic processes including oxidative coupling of methane
and selective catalytic reduction, where both discrete and continuous parameters
were involved in the optimization process, the proposed algorithm significantly
outperforms state-of-the-art approaches with high robustness, identifying top
catalyst recipes and reaction conditions within only several tens of iterations
without any prior knowledge. Notably, the combinatorial optimization process
was achieved by aggressive initial explorations in the discrete catalyst compo-
sition spaces to quickly identify and converge to the optimal catalyst choices,
followed by continuous conditions optimization near the optimal regimes. The
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proposed methodology should be of high generalisability to accelerate mate-
rials discovery in multidimensional experimental design spaces with minimal
experimental costs.

Keywords: Bayesian Optimization, Spectral Mixture Kernel

1 Introduction

Catalyst design and optimization represents a central challenge in the development
of catalytic processes. While whether in catalyst compositions, synthesis parameters,
or reaction condition optimization, researchers often face a vast design space com-
prising thousands to millions of possible candidates [1–4]. An exhaustive search in
such a high-dimensional space via either the typical intuition-based or model-based
practices or even the advanced high-throughput experimentations/screening [5–7] is
essentially impractical and consuming. In reality where experimental budgets are
limited, chemists often seek to sample the vast space using factorial design meth-
ods such as orthogonal experiments, such that the dimension can be simplified by
systematically deconvoluting factorial effects and interactions. While these methods
demand pre-defined experimental matrices that typically derived from literature prece-
dence and chemical intuitions, rendering them infeasible for global optimization. Most
importantly, they become inefficient and inflexible in high-dimensional or nonlinear
design systems, as is often the case for a typical catalyst optimization task, where
co-optimization of categorical and continuous parameters will be involved. For exam-
ple, in the oxidative coupling of methane (OCM), a reaction that directly upgrades
methane to valuable C-C coupled products like ethylene, one must consider a huge
combination of discrete catalyst compositional variables (e.g. metal, support, pro-
moter choices) alongside continuous reaction conditional variables (e.g. temperature,
flow rate, gas concentrations) for optimal product yields.

Alternatively, data-driven optimization approaches have emerged as potential solu-
tions for accelerating catalyst discovery in complex design spaces. Without the need
for deriving an explicit mechanistic model, data-driven methods excel in inferring
causality and correlation based on existing data in an efficient manner. Specifically in
experimental design, Bayesian Optimization (BO) stands out as an efficient probabilis-
tic global optimization method as often only small sample sizes are available [8–15]. In
brief, BO adopts an adapative framework by iteratively building a probabilistic sur-
rogate model of the objectives (e.g., product yields, selectivities) and suggesting the
most informative experiment to perform next. By balancing exploration of new regions
against exploitation of known good candidates, BO can often find high-performing
solutions in only tens of trials, orders of magnitude fewer than unguided searches. This
approach has been successfully applied to various chemical and materials optimization
tasks, particularly suitable for autonomous experimentations [8, 11].

Despite its success, applying BO to mixed-variable optimization problems involv-
ing both discrete and continuous parameters remains a formidable challenge in catalyst
discovery. Classical BO methods usually assume a continuous, smooth search space;
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the presence of categorical choices breaks this smoothness and renders gradient-based
search for optima difficult [16]. In essence, when discrete parameters are involved,
the input space becomes non-differentiable and more complex to model. Several
researchers have addressed this issue by extending or modifying BO. For example,
an early attempt that could handle both variable types was made by Bergstra et al.
(2011) [17] using evolutionary strategies (CMA-ES) for continuous parameters and
an Estimation of Distribution Algorithm (EDA) for discrete ones, coupled with a
tree-structured Parzen estimator to guide the search. More recently, Ru et al. (2020)
proposed CoCaBO [18], a hierarchical method where discrete choices are treated as
a multi-armed bandit problem and continuous variables are optimized with BO once
a discrete choice is fixed. CoCaBO also introduced a kernel that partially integrates
discrete and continuous inputs. However, a bandit approach requires pulling each dis-
crete “arm” (catalyst option) at least once, which becomes intractable as the number
of options grows exponentially, and it does not guarantee convergence to a global opti-
mum. Wan et al. (2021) developed CASMOPOLITAN [19], adopting the hierarchical
framework of CoCaBO but adding a trust-region method for the discrete space. In
this approach, the algorithm focuses on a localized subset of discrete choices at a time,
dynamically adjusting the neighborhood size in terms of Hamming distance to balance
exploration and exploitation in the categorical domain.

Here, we present a Spectral Mixture Kernel Bayesian Optimization (SMKBO)
framework that unifies discrete and continuous variables within a Gaussian Process
(GP) surrogate model. Our key innovation is a composite spectral mixture kernel
that combines two types of spectral components: Gaussian distributions and Cauchy
distributions. The motivation for this design comes from Bochner’s theorem [20] in
harmonic analysis, which guarantees that any stationary kernel can be represented as
a mixture of sinusoids with a certain spectral density. By using a mixture of Gaussian
and Cauchy spectral density functions, we create a kernel with dual characteristics: the
Gaussian component captures smooth, local variations in the response surface, while
the Cauchy component, with its heavy tails, captures global, non-smooth behavior
and long-range correlations. Intuitively, this means our GP surrogate can model both
gentle slopes and sharp jumps in the catalyst performance landscape. This flexibility in
the surrogate greatly alleviates the challenge posed by discrete variables. In effect, the
continuous kernel components shoulder more of the burden in explaining variability,
allowing the discrete kernel components to handle only the truly combinatorial aspects
of the problem. By integrating this spectral mixture kernel with a Hamming-distance-
based covariance for categorical inputs (inspired by the kernels used in CoCaBO [18]
and CASMOPOLITAN [19]), we obtain a unified GP model that treats the entire
input (catalyst types + reaction conditions) holistically.

Furthermore, to ensure efficient search in the discrete space of catalyst candidates,
our framework incorporates a trust-region strategy adapted to categorical variables.
Inspired by how an amateur experimenter might first screen diverse catalyst families
and then hone in on the best one, we impose a dynamic neighborhood constraint on
the discrete choices rather than freely jumping among all possible catalyst options.
Such constraint not only enables rapid identifications of discrete variables with con-
sistently higher performance in an initial broad search, followed by fine-tuning of the
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reaction conditions (continuous variables) to maximize the performance, but also sus-
tains exploratory wills by occasionally examining alternative discrete combinations
even after convergence to avoid trapping in local optima. Using experimental data col-
lected from high-throughput experimentations for two important catalytic processes
including oxidative coupling of methane (12,708 data points for 59 distinct catalyst for-
mulations under various conditions) [21] and urea-selective catalytic reduction (XXX)
as virtual test grounds, our SMKBO achieved higher performance with much fewer
experiment iterations than state-of-the-art mixed-variable BO algorithms reported to
date, with calculation speed remains comparable to simple BO methods. To the best
of our knowledge, this is one of the first BO frameworks to jointly optimize over dis-
crete and continuous experiment variables without splitting the problem, such that the
correlations between catalyst composition and reaction conditions, as deeply coupled
as they always are, can be fully leveraged.

In summary, we introduce a Bayesian optimization framework for mixed discrete-
continuous spaces that enables accelerated catalyst discovery. By capturing both local
and global patterns in the experimental landscape via a Cauchy-Gaussian spectral
mixture kernel, our approach overcomes the traditional hurdles of mixed-variable opti-
mization. We not only improve the efficiency of finding high-performance catalysts
for methane oxidative coupling, but also glean valuable strategic insight into how a
smart search algorithm navigates complex design spaces. The generality of this frame-
work can be readily applicable to many other mixed-variable optimization domains,
including but not limited to drug discovery, material deisgns, robotic motion planning,
supply chain network design etc. providing a powerful tool to accelerate innovation in
experimental science.

2 Results

2.1 Optimization of catalysts for the oxidative coupling of
methane(OCM).

Oxidative coupling of methane is an important class of reactions where methane gas
is directly upgraded to high-value products such as ethane and ethylene, often accom-
panied by by-products such as CO and CO2. From a chemoinformatics perspective,
research in this field is already quite mature, with abundant experimental data. In
2020, Thanh Nhat Nguyen et al. [21] used high-throughput equipment to obtain a
total of 12,708 real experimental data points for 59 different catalysts under varying
metal ratios and reaction conditions, providing strong data support for our work.

This dataset includes, for each catalyst, information on the metal species and pro-
portions, support type, reaction temperature, and reaction atmosphere. It also records
the selectivity and yield of each product as evaluation metrics. For multiobjective
optimization problems, a common approach is to use specialized multi-objective acqui-
sition functions to obtain the Pareto front. Another approach is to aggregate multiple
objectives into a single objective, allowing the use of standard single-objective opti-
mization tools. The advantage of the former lies in its ability to produce a set of
non-dominated solutions, offering various trade-offs for decision makers without rely-
ing on comparability or predefined weights among objectives. However, it tends to
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Fig. 1 (a)Distribution of target values corresponding to different catalyst compositions, with the
white line indicating the median. The compositions are arranged in ascending order according to the
highest target value reported in the database. (b) Overview of the catalyst library employed in the
study, including 18 precursors A, 30 precursors B, and 13 supports.

be computationally expensive and selecting a final solution still requires additional
decision making. The latter approach, although it sacrifices the diversity of trade off
solutions and requires careful consideration in how the objectives are combined, is
generally more efficient once the aggregation method is determined.

In this work, we adopt the latter strategy by integrating the selectivity and yield of
different products into a single objective function. To balance and integrate selectivity
and yield, the objective function is defined as follows:

Target = ConvCH4

2YC2H4 + YC2H6

2YCO2 + YCO
(1)

5



where ConvCH4 represents the conversion of CH4, Y represents yield. The coefficient
is determined by the value of each product, reflecting the idea of how much value-
generating product can be produced at a given level of byproduct. In theory, every
possible combination of multiple objectives can define a distinct chemical space. This
work also explores different ways of defining the target, and the results show that
as long as the target exhibits a reasonable trend, our method can deliver excellent
performance.

2.2 Treatment of discrete parameters

In the context of the OCM optimization problem, four discrete parameters were ini-
tially considered, corresponding to the selection of three distinct metal components
and one catalyst support type.(Fig. 1b) To enable joint optimization with continuous
parameters, we employed an exponentially decaying overlap kernel in conjunction with
Hamming distance based discrete search space defined in (Eq. 3), thereby embedding
both discrete and continuous domains within a unified surrogate modeling framework
in (Eq. 4).

Subsequently, the four discrete parameters were aggregated into composite categor-
ical entries, each representing a unique combination of metal-support configurations
(e.g., Mn—Na—W—SiC) rather than being treated as independent parameter dimen-
sions. This reformulation effectively reduced the discrete optimization subspace to a
single categorical variable, simplifying the search landscape while preserving the com-
binatorial complexity inherent to catalyst composition, ensuring the validity of the
results.

In this implicit chemical space, we conducted five independent optimization runs,
each with 150 iterations. During the early exploration phase (iterations 0–40), MVRSM
and SMKBO performed similarly and outperformed the other methods. Subsequently,
the performance of CAS and CoCaBO improved markedly, reaching parity with
MVRSM; however, the incumbent solution achieved by SMKBO remained clearly
higher than the others whose final target performance converged to approximately
65.(Fig 2b)

Then the four discrete parameters were separated and treated as four independent
dimensions for optimization.(Fig 2a) During the early stage of optimization (itera-
tions 0–65), all algorithms, except for random search, exhibited similar optimization
speeds. However, beyond this point, CAS, TPE, and MVRSM gradually converged to
comparable performance levels, while the average optimization incumbent solution of
SMKBO continued to increase, ultimately converging to a value of approximately 60.

To quantify the performance of optimization methods, the concepts of Enhance-
ment Factor (EF) and Acceleration Factor (AF) are introduced.(Section 5.4) The
results show that the SMKBO methods outperform other approaches both before and
after the integration of discrete parameters. Compared with the optimization config-
uration where discrete parameters are dispersed, the integrated configuration leads to
significant improvements in both enhancement and acceleration factors, with only the
TPE method showing a slight decline in performance.(Fig.2c,d)
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Fig. 2 (a)Incumbent solution values for the separate discrete parameters configuration over 150
iterations (b)Incumbent solution values for the combined discrete parameters configuration over 150
iterations. (c) (d) Enhancement and acceleration factors of all methods for separated discrete param-
eters configuration and combination discrete parameters configuration. Shaded regions in (a) and (b)
represent standard deviation, while scatter points in (c) and (d) indicate individual method perfor-
mances.

2.3 Robustness analysis

To verify the stability of the proposed method, Gaussian noise with a mean of 0 and
standard deviations of 1% and 5% of the global optimum target (69.9) was added
to the target values at each optimization iteration, thereby simulating measurement
errors encountered in real experiments.

In the robustness analysis, SMKBO consistently outperforms competing algorithms
across both low- and high-noise conditions. When the discrete parameters are treated
separately (Fig 3a,c), SMKBO shows a clear efficiency advantage, particularly under
low noise, where the performance gap with other algorithms widens steadily with the
number of iterations. When the discrete parameters are integrated (Fig 3b,d), the
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Fig. 3 (a)(b) Incumbent solution values for the separate discrete parameters configuration over 150
iterations under 1% and 5% global standard deviation noise. (c)(d)Incumbent solution values for the
separate integrated parameters configuration over 150 iterations under 1% and 5% global standard
deviation noise. Shaded regions represent standard deviation

dimensionality reduction allows other algorithms, such as CAS, to focus more effec-
tively on continuous parameters, thereby narrowing the performance gap. However,
even under these conditions, SMKBO maintains lower fluctuation levels than other
methods, demonstrating superior robustness. As the noise level increases, the bene-
fits of parameter integration become more apparent for all algorithms, yet SMKBO
remains the most stable method. These results highlight that SMKBO not only excels
in efficiency under challenging mixed variable scenarios but also exhibits stronger
robustness against noise, making it particularly suited for practical optimization tasks.
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2.4 Different Number of Cauchy and Gaussian Mixtures

To illustrate the performance differences resulting from varying the number of mix-
ture components, we further compare the performance of spectral mixture kernels
combining Cauchy and Gaussian components, as illustrated in Fig. 4.

Fig. 4 Results for spectral mixture kernels with different number of Cauchy and Gaussian mixtures.
The x-axis represents the number of Cauchy components, and the y-axis represents the number of
Gaussian components. Different colors are used to distinguish mixtures based on their total number
of components (7,9,11). The bubble size represents the AUC area. (a) is for separation configuration,
(b) is for combination configuration

3 Discussion

3.1 Optimization Path Analysis in Discrete Parameters

During the first 50 iterations, the algorithm had not yet gained sufficient knowledge
about the metal composition, and the obtained target values remained relatively low.
After 50 iterations, the algorithm converged to the Ti–Mg–W-ZSM-5 combination,
but it still sparsely replaced the values of discrete parameters to enable exploration.
Interestingly, both Component2 and the Support appeared to fall into local optima,
with values of Mg and ZSM-5, respectively. However, as the number of iterations
increased, both eventually escaped from the local optima. Nevertheless, in some other
iterations, the ZSM-5 support was also found to yield optimal values.(Fig.5)

Moreover, after initial convergence, the algorithm tends to alter only one discrete
variable at a time while keeping the others fixed. This behavior parallels the common
strategy employed by experimental scientists, who usually vary a single factor to assess
its impact on the outcome. In addition, when a notable performance improvement
is observed, the algorithm not only proceeds with iterating and switching discrete
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values, but also takes some ”make sure ” moves which are reverting to the previous
convergence point to verify whether the observed improvement is indeed attributable
to the change in the corresponding discrete variable immediately.

From the perspective of convergence results, among all the discrete parame-
ter combinations to which SMKBO ultimately converged, 65% converged to the
Mn–Na–W combination, which corresponds to the best C2 yield reported in the orig-
inal database and exhibited excellent performance on SiC, SiO2, CeO2, ZSM -5, and
SiCnf . The next most combination is the Ti–Na–W–SiO2 combination, to which
SMKBO converged with a proportion of 15.7%.

3.2 Optimization Path Analysis in Continuous Parameters

To understand the optimization process, all continuous parameters were projected into
a two-dimensional space using t-SNE. The background denotes the predicted target
values obtained via regression with XGBoost [22], where the discrete parameters were
fixed to the optimal combination corresponding to each set of continuous parameters
to ensure the consistency of the regression surface. (Fig.6)

The results indicate that the algorithm starts from the lower right region with rela-
tively low target values and progresses almost diagonally toward the upper left region
with higher target values. During the first 20 iterations, the continuous parameters
exhibited substantial fluctuations, suggesting that the algorithm was simultaneously
learning the discrete parameters while exploring the continuous variable space as
extensively as possible. Moreover, within the first 50 iterations, two optimization
paths for the continuous parameters were identified. After 70 iterations, the algo-
rithm discovered a better performing combination of continuous parameters, entering
the red region in the figure. Subsequently, following the 76th iteration (when the
Support had just converged to SiC), the algorithm kept the continuous parameters
nearly unchanged from iterations 76 to 79, in order to verify whether the observed
performance improvement was indeed attributable to the discrete variable.

4 Conclusion

In this study, we replaced the surrogate model in BO with a mixed spectral kernel
constructed from GSM and CSM, where the kernel function is defined in the frequency
domain based on the corresponding spectral density functions. This approach achieved
performance surpassing previous work in OCM tasks. Furthermore, the SMKBO
method was also applied to the NOx reduction over zeolite-based SCR catalysts sce-
nario, and it consistently demonstrated superior performance compared to the other
approaches.

These results demonstrate that the SMKBO exhibits a stronger capability in cap-
turing complex relationships in the experimental parameter space. Intuitively, the
hybrid kernel combines the characteristics of both Gaussian and Cauchy compo-
nents: the GSM decays exponentially with the square of distance, effectively capturing
smooth regions of the parameter space, while the CSM decays exponentially with

10



Fig. 5 Evolution of discrete parameters during optimization for (a) Component 1 (M1), (b) Compo-
nent 2 (M2), (c) Component 3 (M3), and (d) Component 4 (Support). Each vertical stripe corresponds
to the selected element/support at a given iteration. (e) Target value as a function of iteration number,
showing the overall improvement and convergence trend. Pink arrows highlight partially successful
attempts, whereas orange arrows highlight partially failed attempts. Red boxes highlight the “make
sure” moves.

distance, enabling better utilization of outliers in the observed data. This dual behav-
ior contributes to the superior performance of the proposed method over existing
optimization algorithms.

The optimization logic of SMKBO resembles that of human scientists. It follows an
explore-first, exploit-later strategy, allowing extensive exploration of the search space
before focusing on high-potential regions. Moreover, verifications are conducted after
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Fig. 6 All continuous parameters were projected into a two-dimensional space using t-SNE. The
background color represents the regression surface of the target value, with discrete parameters fixed
to the optimal combination corresponding to each set of continuous parameters. Each point denotes
an iteration, colored according to the iteration number.

switching the convergence criterion, ensuring that the obtained solutions are both
stable and reproducible.

5 Method Overview

5.1 Dataset Construction

The data were originally collected from the work of Thanh Nhat Nguyen et al. in
2020 [21]. In this study, the authors developed a high-throughput screening instrument
capable of automatically evaluating the performance of 20 catalysts under 216 different
reaction conditions. A total of 12,708 data points were collected from 59 combinations
of catalysts and varying experimental parameters.

Each condition includes temperature (◦C), total flow (mL/min), flows of Ar, CH4,
and O2, the molar amount of metal in the precursor (mol), contact time (seconds),
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and the CH4/O2 molar ratio. The performance of catalysis is represented by Coversion
rate, yield and selectivity of C2H4, C2H6, CO and CO2. In this work, the performance
indicators of the catalysts were recombined to enable a comprehensive representation
of catalyst selectivity and productivity. (Eq. 1) Besides, the optimization parameters
include temperature (◦C), flows of Ar, CH4, and O2, the molar amount of metal in
the precursor (mol) and contact time (seconds).

5.2 Bayesian Optimization

Consider the problem of maximizing an unknown and expensive function f , which can
be formulated as:

x∗ = argmax
x∈X

f(x)

where X ⊂ Rd denotes the search/decision space of interest and x∗ represents the
global minimum. Starting with a limited set of observations, BO builds a probabilistic
surrogate model, typically a GP, to estimate the unknown objective function. It then
uses an acquisition function to evaluate and prioritize candidate solutions based on the
model’s posterior distribution. The acquisition function guides the search by selecting
the most promising points to evaluate next. After each new evaluation, the surrogate
model is updated, and the process continues to refine the search. The method seeks
to identify the optimal solution within the given constraints.

5.2.1 Continuous Search Space: Spectral Mixture Kernel

The choice of kernel significantly influences BO performance by shaping the structure
of the underlying GP surrogate. Most existing BO solvers use conventional ker-
nels (e.g., squared exponential, rational quadratic, and Matérn), which, despite their
simplicity, often fail to capture the complexity inherent in practical applications. [23].

In this paper, we propose a spectral mixture kernel, motivated by Bochner’s
theorem [24], which establishes that every stationary kernel corresponds to a symmet-
ric spectral measure. This leads to the following general form:

kx(τ) =

Qg∑
q=1

wg
q exp

(
−2π2τ⊤Σqτ

)
cos
(
2πτ⊤µq

)
+

Qc∑
q=1

wc
q exp

(
−2π|τ⊤γq|

)
cos
(
2πτ⊤x0q

)
.

(2)
A detailed treatment of the spectral mixture kernel is provided in Section 6, where

we present its mathematical derivation, discuss its theoretical properties, and demon-
strate how its flexibility allows it to approximate a wide class of kernels. We further
show that it achieves superior empirical performance in continuous search spaces
compared to conventional alternatives.

5.2.2 Mixed Search Space: Composite Kernel

In addition to the purely continuous problems, our spectral mixture kernel also gener-
alizes to mixed categorical-continuous spaces, a setting frequently encountered in the
context chemistry and experimentation but hitherto under-explored in literature.
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For categorical inputs, we modify the Hamming kernel k(h,h′) = σ
dh

∑dh

i=1 δ(hi, h
′
i),

in Ru et al. [25] and Kondor and Lafferty [26]:

kh(h,h
′) = exp

(
1

dh

dh∑
i=1

ℓiδ(hi, h
′
i)

)
, (3)

where {ℓi}dh
i are the lengthscale(s), and δ(·, ·) is the Kronecker delta function.

To handle mixed input z = [h, x], we combine the spectral mixture kernel and
Hamming kernel together and propose the composite kernel:

k(z, z′) = λ
(
kx(x,x

′)kh(h,h
′)
)
+ (1− λ)

(
kh(h,h

′) + kx(x,x
′)
)
, (4)

where λ ∈ [0, 1] is a trade-off parameter, kx is defined in Eq. (2) and kh is defined
in Eq. (3). This formulation therefore allows us to use composite kernels that are
most appropriate for the mixed input types while still flexibly capturing the possible
additive and multiplicative interactions between them.

5.2.3 Acquisition Function

Given our unified Gaussian Process handles both categorical and continuous inputs,
we propose a novel acquisition strategy that alternates between optimizing these input
types. At each optimization step, we perform one local search step for categorical
inputs followed by one gradient-based optimization step for continuous inputs. This
alternation repeats until convergence or until reaching a predefined maximum number
of iterations.

Local Search for Categorical Inputs

Optimizing categorical spaces presents unique challenges as standard surrogate mod-
els tend to over-explore. We employ a Trust Region (TR) approach [27] with two
phases: First, the unified GP (with kernel in Eq. (4)) identifies a promising center solu-
tion. Then, a local GP trained on solutions within this trust region performs refined
optimization to select the final candidate. This hierarchical strategy balances global
exploration with local exploitation.

Center Solution Selection

The unified GP selects the center solution h
(0)
i using an Upper Confidence Bound

(UCB) acquisition strategy:

h
(0)
i = argmax

h∈H

[
µuni(h;Di) +

√
βiσuni(h;Di)

]
where µuni(h;Di) and σ

2
uni(h;Di) are the posterior mean and variance of the unified

GP trained on historical data Di, and βi controls the exploration-exploitation trade-
off. This center solution serves as the starting point for trust region exploration.
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Trust Region Construction

The trust region defines a constrained neighborhood around center solution h∗:

TRh(h
∗)Lh =

{
h |

dh∑
i=1

δ(hi, h
∗
i ) ≤ Lh

}

The radius Lh adapts dynamically, expanding when the best function value f∗T
improves and contracting otherwise. The bounds Lh

min = 0 and Lh
max = dh correspond

to the Hamming distance limits.

5.3 AutoML

Based on the dataset and prediction target, models such as XGBoost, LightGBM, and
Random Forest were automatically integrated by AutoGluon-Tabular [28] to capture
the implicit chemical space. This approach achieved a mean absolute error (MAE) of
2.15% on the test set, with a training-to-test split ratio of 7:3.

AutoGluon-Tabular is an open-source automated machine learning (AutoML)
framework specifically designed for tabular data. It integrates widely used models,
including XGBoost, LightGBM, CatBoost, Neural Networks, and Random Forests.
By employing advanced techniques such as multi-layer stack ensembling and repeated
k-fold bagging, it enables both accurate and efficient model fitting. In this work, we
used AutoGluon version 1.3.1.

5.4 Enhancement factor and acceleration factor

The EF is employed to quantify the optimization performance of an algorithm after a
given number of iterations.

The AF is employed to evaluate the speed improvement of an optimization algo-
rithm relative to random search. Specifically, it is defined as the ratio between the area
under the iteration–incumbent solution curve of the algorithm and that of random
search.

EF =
YIncumbent

Ybest
AF =

AUCMethod

AUCRS

This definition was originally inspired by the work of Qiaohao Liang et al.[29] In
their study, the authors introduced the concepts of the enhancement factor and the
acceleration factor, formulated with reference to the Top% metric.

6 Spectral Mixture Kernel

6.1 Kernel Derivation

Our proposed spectral mixture kernel stems from Bochner’s Theorem, which provides a
foundational result in characterizing positive definite kernels in terms of their spectral
representations.
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Theorem 1 (Bochner’s Theorem [30]) A complex-valued function k on RP is the kernel of
a weakly stationary, mean square continuous complex-valued random process on RP if and
only if it can be represented as

k(τ) =

∫
RP

exp(2πis⊤τ)dψ(s),

where ψ is a positive finite Borel measure on RP .

Specifically, Bochner’s theorem states that the Fourier transform of any stationary
covariance function on RP is proportional to a probability measure, and conversely,
the inverse Fourier transform of a probability measure yields a stationary covariance
function [24, 30]. The measure ψ is called the spectral measure of k. If ψ has a density
S, then S is referred to as the spectral density or power spectrum of k. The covariance
function k and the spectral density S forms a Fourier pair [31]:

k(τ) =

∫
S(s) exp(2πis⊤τ) ds, S(s) =

∫
k(τ) exp(−2πis⊤τ) dτ. (5)

6.1.1 Gaussian Spectral Density

A natural choice for constructing a space of stationary kernels is to use a mixture of
Gaussian distributions [23] to represent the spectral density S(s):

ϕg(s) =

Qg∑
q=1

wqN (s;µq,Σq), S(s) =
ϕg(s) + ϕg(−s)

2
, (6)

where the construction of S ensures symmetry, and the wights wq determine the
contribution of each of the Qg components. By taking the inverse Fourier transform
in Eq. (5), the resulting spectral mixture kernel induced by Gaussian distributions
(Gaussian spectral mixture kernel, GSM) is given by:

kg(τ) =

Qg∑
q=1

wq exp
(
−2π2τ⊤Σqτ

)
cos
(
2πτ⊤µq

)
. (7)

Inspecting Eq. (7), we observe that the covariance function induced by a Gaussian
mixture spectral density is infinitely differentiable. However, this choice may generate
overly smooth sample paths [32].

6.1.2 Cauchy Spectral Density

To address the issue of overly smooth sample paths in GSM, we introduce a different
family of distributions, i.e., Cauchy distributions, to construct a class of continuous
but finitely differentiable covariance functions.
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Theorem 2 If ϕc(s) is a mixture of Qc Cauchy distributions on RP , where the qth com-

ponent has a position parameter vector x0q = (x0
(1)
q , . . . , x0

(P )
q ) and scale parameter γq =

diag(γ
(1)
q , . . . , γ

(P )
q ), and τp is the pth component of the P -dimensional vector τ = x − x′.

The Fourier dual of spectral density ϕc(s) is

kc(τ) =

Qc∑
q=1

wq exp
(
−2π|τ⊤γq|

)
cos

(
2πτ⊤x0q

)
.

The spectral mixture kernel induced by Cauchy distributions is referred to as the
Cauchy spectral mixture kernel (CSM). We offer a brief outline of the key ideas here,
and a detailed proof is provided in Appendix E.1.

We begin by considering a simplified case where the probability density function
of a univariate Cauchy distribution is given by

C(s;x0, γ) =
1

π

γ

(s− x0)2 + γ2
, (8)

and the spectral density S follows Eq. (6), while replacing the Gaussian distribution
with Cauchy distribution. Noting that S is symmetric [33], substituting S into Eq. (5)
yields

kc(τ) =
1

π

∫
γ

(s− x0)2 + γ2
exp (2πisτ) ds.

Notice that
∫∞
−∞

γ
(s−x0)2+γ2 ds = π, we have

F
[

γ

(s− x0)2 + γ2

]
= exp(−2π|γτ |) exp (2πix0τ) ,

where F denotes the Fourier Transform. This gives us the following kernel

kc(τ) = exp (−2π|γτ |) cos(2πτx0).

Now, if ϕ(s) is a mixture of Qc Cauchy distributions as described in Theorem 2,

with its spectral density given by ϕc =
∑Qc

q=1 wqC(s;x0q, γq), we obtain

kc(τ) =

Qc∑
q=1

wq

P∏
p=1

exp
(
−2π|τpγ(p)q |

)
cos(2πτpx0

(p)
q ) =

Qc∑
q=1

wq exp
(
−2π|τ⊤γq|

)
cos
(
2πτ⊤x0q

)
.

(9)
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6.1.3 Cauchy and Gaussian Spectral Mixture Kernel

To leverage the complementary properties of both distributions, we define a spectral
density S(s) as a mixture of Gaussian and Cauchy components:

ϕcg(s) =

Qg∑
q=1

wg
qN (s;µq,Σq) +

Qc∑
q=1

wc
qC(s;x0q, γq). (10)

The resulting Cauchy-Gaussian Spectral Mixture (CSM+GSM) then follows:

kcg(τ) =

Qg∑
q=1

wg
q exp

(
−2π2τ⊤Σqτ

)
cos
(
2πτ⊤µq

)
+

Qc∑
q=1

wc
q exp

(
−2π|τ⊤γq|

)
cos
(
2πτ⊤x0q

)
,

(11)
which is exactly the same as the general form in (2).The CSM+GSM kernel offers
several key advantages over using either component alone. First, it maintains spectral
interpretability, where each component’s location parameters (µq and x0q) correspond
to distinct frequency modes and their weights represent relative energy contributions.
Second, it achieves adaptive smoothness through multi-scale modeling capability. The
Gaussian components capture smooth global trends via their bandwidth parameters
Σq while the Cauchy components model local variations through their heavy-tailed
distributions controlled by γq.

6.2 Information Gain and Regret Bound

We first provide upper bounds on the maximum information gains of the spectral
mixture kernels, which measure how fast the objective function f can be learned in an
information-theoretic sense. We refer readers to Appendix E.2 for the detailed proofs
of the results in this section.

The maximum information gain γ(T ) achieved by sampling T points in a GP
defined over a set X ⊂ Rd with a kernel k is defined as:

γ(T ) := max
A⊂X :|A|=T

I(yA; fA),

where I(yA; fA) =
1
2 log |I+σ

−2KA|.KA = [k(x, x′)]x,x′∈A is the covariance matrix
of fA = [f(x)]x∈A associated with the samples A, and σ2 is the noise variance.

Theorem 3 The upper bounds on the maximum information gain of CSM and GSM kernels
are:

a) Cauchy spectral mixture (CSM): γc(T ) = O
(
T

d2+d

d2+d+1 (log T )

)
;

b) Gaussian spectral mixture (GSM): γg(T ) = O
(
(log T )d+1

)
.

where d denotes the input dimension.
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Using maximum information gain, we apply Theorem 1 from Srinivas et al. [34] to
derive the cumulative regret bound when pairing with a UCB acquisition function.

Proposition 4 Let δ ∈ (0, 1), βt = 2 log
(
|X |t2π2/6δ

)
, where βt is the hyperparameter

for the UCB acquisition function. Suppose the objective function f : X → R is sampled
from GP(0, k(x, x′)). With high probability, BO using the UCB acquisition function obtains
a cumulative regret bound of

a) Cauchy spectral mixture (CSM): O
(
T

2d2+2d+1

2(d2+d+1)
√

log T · log |X |
)
,

b) Gaussian spectral mixture (GSM): O
(√

T · (log T ) d+1
2 ·

√
log |X |

)
.

The information gain for the CSM kernel grows at a sub-polynomial rate in T . The

exponent d2+d
d2+d+1 is slightly less than 1, implying that the information gain increases

rapidly, but at a diminishing rate as T grows. For the GSM kernel, the information
gain grows logarithmically in T , with the growth rate amplified by the dimensionality
d, indicating that higher dimensionality increases the rate of information gain. Due
to its logarithmic growth in T , the GSM kernel more effectively controls cumulative
regret, providing more stable long-term performance.

While our theoretical analysis establishes regret bounds for pure CSM and GSM,
the CSM+GSM kernel suggests intriguing potential behavior. Intuitively, its mixed
components imply dual-phase characteristics: in the initial optimization stages, the
Cauchy components may promote high-frequency exploration, leading to polynomial
information gain, while the asymptotic behavior is likely to transition to logarithmic
scaling as the Gaussian components, which capture low-frequency patterns, become
dominant. This phased behavior could provide a practical balance, achieving faster
initial convergence compared to pure GSM while offering better long-term stability
than pure CSM.

Example 1 Figure 7 visualizes one iteration of BO using different kernels based on 6 random
samples from a 1D test function f(x) = sin(x) + sin( 103 x).

The results reveal significant divergence in the behavior of GP surrogates employing dif-
ferent kernels. CSM excels in capturing high-frequency components (rapid oscillations and
narrow confidence bands around sharp peaks), aligning with its heavy-tailed spectral den-
sity that preserves high-frequency content; while GSM better models low-frequency trends
(smooth fitting and wider confidence intervals) due to its exponentially decaying spectral
density that attenuates high frequencies. The CSM+GSM1 achieves superior performance by
maintaining CSM’s precise high-frequency tracking and GSM’s stable low-frequency extrap-
olation, as visually confirmed by its balanced error distribution and theoretically explained
by its dual-peaked spectral energy distribution.

1CSM, GSM, and CSM+GSM in the main text denote spectral mixture kernels with 7 Cauchy, 7 Gaussian,
and 6 Cauchy plus 1 Gaussian components, respectively. We verify the robustness of our results to alternative
component specifications in Appendix C.6.
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(a) CSM (b) GSM (c) CSM+GSM
Fig. 7 Comparison of predictive distributions for the objective f(x) using different kernels, before
and after conditioning on the sampled point. The upper subplots show the GP surrogate before
and after adding a new sample point, while the lower subplots display the corresponding acquisition
function values using UCB and indicate the next point to sample.

6.3 Approximate Conventional Kernels

Theorem 1 allows us to approximate an arbitrary stationary covariance function by
approximating (e.g., modeling or sampling from) its spectral density [32]. Since mix-
tures of Cauchy and Gaussian distributions can be used to construct a wide range of
spectral densities [35], these mixtures enable us to approximate any stationary covari-
ance function. We considered the approximation of conventional kernels of various
complexities. The parameters for source kernels that generate the data are shown in
Table D2 (Appendix C).

We evaluate the approximation ability of six distinct kernels, including the stan-
dard RQ, MA12, and MA52, alongside our proposed CSM, GSM, and CSM+GSM,
through both quantitative and functional analyses. Table 1 reveals that our proposed
kernels achieve superior marginal log likelihood (MLL) scores compared to conven-
tional kernels. Figure 8 further demonstrates that our proposed kernels provide the
closest approximation to the true kernel’s correlation structure.

6.4 Optimization Tasks

To further illustrate the efficay of spectral mixture kernel, we validate our approach
against several baselines across a diverse set of optimization tasks, with results sum-
marized in Table 2 and details deferred to Appendix C. The findings indicate that
both CSM and GSM consistently outperform other methods in terms of convergence
speed and optimality gap. Notably, the combined CSM+GSM kernel achieves the best
overall performance across most benchmark functions, and this advantage becomes
increasingly pronounced as the problem dimensionality grows.

For conventional kernels, performance varies substantially depending on the spe-
cific task, underscoring their limited adaptability. In contrast, as we shift to more
practical and challenging objective functions (Robot 4d, Portfolio 5d), the benefits
of employing more flexible and computationally efficient kernels become evident. All
variants of the spectral mixture kernels outperform conventional baselines, with the
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Table 1 MLL of training on the sampled data. A higher MLL indicates a better approximation of the true
kernel. Each experiment was repeated 10 times using different random seeds. The table shows the mean
MLL values with standard deviations in parentheses.

CSM+GSM CSM GSM RQ MA52 MA12 True

SE
2.751
(0.067)

2.719
(0.075)

2.702
(0.059)

2.498
(0.058)

2.437
(0.058)

2.256
(0.061)

2.752
(0.044)

SE+MA32
1.021

(0.055)
1.012

(0.061)
1.042
(0.059)

0.872
(0.066)

1.040
(0.058)

0.891
(0.053)

1.134
(0.051)

SE*SE
2.499
(0.059)

2.271
(0.054)

2.398
(0.056)

2.292
(0.065)

1.933
(0.058)

1.728
(0.063)

2.517
(0.045)

PE+SE+MA32
0.885
(0.057)

0.821
(0.050)

0.776
(0.053)

0.527
(0.061)

0.530
(0.051)

0.459
(0.053)

0.920
(0.044)

SE*(PE+MA32)
0.569
(0.049)

0.521
(0.053)

0.557
(0.044)

0.418
(0.052)

0.534
(0.042)

0.377
(0.043)

0.575
(0.041)

PE*(SE+MA32)
0.983
(0.049)

0.965
(0.052)

0.894
(0.048)

0.634
(0.057)

0.681
(0.053)

0.685
(0.056)

1.053
(0.044)

hybrid kernel that integrates both Gaussian and Cauchy components delivering the
most robust gains. In particular, this kernel reduces the log optimality gap by nearly
two orders of magnitude compared to standard Bayesian optimization methods that
rely on conventional kernels.

(a) SE (b) SE+MA32 (c) SE*SE

(f) PE+SE+MA32 (d) SE*(PE+MA32) (e) PE*(SE+MA32)
Fig. 8 Learned correlation function in kernel approximation. The horizontal axis denotes the
Euclidean distance between two points, while the vertical axis represents the corresponding covariance
distance. The darker solid line denotes the kernel that generates sampling points. Spectral mixture
kernels more closely approximate the true kernel.
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Table 2 Results for different test functions and algorithms across 10 repetitions using UCB
acquisition function. In each cell, the first number represents the mean results, and the second number
(inside parentheses) indicates the standard error. ABO failed in Rosenbrock-20d and Levy-30d.

Objective Dim RBF RQ MA52 ABO ADA SDK SINC CSM GSM CSM+GSM

Branin 2
-2.29
(0.02)

-2.25
(0.03)

-2.33
(0.02)

-0.80
(0.03)

-2.29
(0.01)

2.56
(0.15)

3.02
(0.08)

-1.98
(0.03)

-2.29
(0.03)

-2.34
(0.01)

Hartmann 3
-1.43
(0.06)

-1.63
(0.05)

-0.91
(0.10)

0.46
(0.15)

-2.14
(0.11)

-1.77
(0.07)

-0.49
(0.06)

-3.21
(0.10)

-1.84
(0.12)

-7.22
(0.20)

Exponential 5
3.23

(0.05)
2.19

(0.09)
3.64

(0.06)
-0.71
(0.13)

0.76
(0.07)

0.23
(0.04)

2.97
(0.10)

-0.61
(0.14)

-0.89
(0.09)

-0.87
(0.06)

Hartmann 6
-1.41
(0.08)

0.74
(0.09)

-2.36
(0.12)

-2.43
(0.15)

-2.34
(0.10)

-2.36
(0.08)

-0.55
(0.06)

-3.14
(0.12)

-2.59
(0.13)

-3.14
(0.15)

Exponential 10
2.17

(0.14)
2.81

(0.16)
2.21

(0.14)
2.28

(0.13)
2.48

(0.19)
1.46

(0.13)
2.06

(0.16)
1.37

(0.18)
1.33

(0.17)
0.72
(0.18)

Rosenbrock 20
7.97

(0.42)
7.97

(0.46)
7.94

(0.45)
–

7.86
(0.45)

7.93
(0.47)

7.96
(0.46)

3.97
(0.40)

3.68
(0.38)

4.11
(0.39)

Levy 30
3.47

(0.28)
3.57

(0.24)
3.62

(0.25)
–

3.51
(0.27)

3.59
(0.27)

3.66
(0.23)

3.59
(0.22)

3.49
(0.25)

3.34
(0.21)

Robot 4
2.08

(0.05)
1.51

(0.06)
1.84

(0.07)
1.94

(0.05)
0.87

(0.04)
0.91

(0.10)
1.62

(0.11)
0.87

(0.05)
0.71

(0.03)
-0.41
(0.04)

Portfolio 5
20.02
(1.01)

20.61
(0.97)

15.49
(0.92)

18.84
(0.87)

17.61
(1.07)

16.27
(0.98)

18.79
(1.02)

23.32
(0.90)

21.86
(0.91)

25.62
(0.87)
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Appendix A Primer on Gaussian Process

A.1 Gaussian Process

Gaussian process defines a distribution over functions f : X → R, parameterized by a
mean function m(·) and a covariance function k(·, ·):

f ∼ GP(m(x), k(x, x′)),

where x ∈ X is an arbitrary input variable, and the mean function m(x) and
covariance function k(x, x′) are defined as

m(x) = E[f(x)], k(x, x′) = cov(f(x), f(x′)).

For any finite set {x1, . . . , xn} ⊂ X , the function values f =
(f(x1), f(x2), . . . , f(xn)) follow a multivariate Gaussian distribution:

(f(x1), f(x2), . . . , f(xn))
⊤ ∼ N (µ,K),

where the n × n covariance matrix K has entries Kij = k(xi, xj), and the mean
vector µ has entries µi = m(xi). GP depends on specifying a kernel function, which
measures the similarity between input points. A typical example is the SE kernel in
Eq. (A1). Functions drawn from a GP with this kernel are infinitely differentiable.
Another example is the Matérn kernel with degrees of freedom ν = p+ 1/2:

kν(r) = e−
√

2νr
ℓ

Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

ℓ

)p−i

,

which is k-times differentiable only if k < ν.

A.2 Conventional Kernels

Squared Exponential, also known as Radial Basis Function (RBF):

kSE(x, x
′) = exp(−∥x− x′∥2

2ℓ2
), (A1)

Rational Quadratic:

kRQ(τ) =

(
1 +

τ2

2αℓ2

)−α

, (A2)

Periodic:
kPE(τ) = exp

(
−2 sin2(πτω)/ℓ2

)
. (A3)

Matérn kernel with ν = 3
2 :

kν=3/2(τ) =

(
1 +

√
3τ

ℓ

)
exp

(
−
√
3τ

ℓ

)
, (A4)
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Matérn kernel with ν = 5
2 :

kν=5/2(τ) =

(
1 +

√
5τ

ℓ
+

5τ2

3ℓ2

)
exp

(
−
√
5τ

ℓ

)
. (A5)

We refer readers to Rasmussen & Williams [33] for a comprehensive catalog of
different kernels.

Appendix B Related Work of Spectral Mixture
Kernel

B.1 BO with Kernel Designs

Conventional kernels, such as the SE or Matérn kernels, assume a fixed structure
that may not capture the complexities of high-dimensional objective functions. To
address this, several approaches have been proposed to design flexible kernels through
automatic construction and adaptation. Kandasamy et al. [36] introduced an additive
structure for the objective function, decomposing it into a sum of lower-dimensional
functions. This approach allows for efficient optimization in high-dimensional spaces
by reducing the effective dimensionality of the problem. Building upon this, Gardner
et al. [37] proposed a method to automatically discover and exploit additive struc-
tures using a Metropolis-Hastings sampling algorithm. Their approach demonstrated
improved performance by identifying hidden additive components in the objective
function.

Malkomes et al. [38] introduced a dynamic approach to kernel construction dur-
ing the BO process. They used a predefined grammar to iteratively combine basic
kernels, enabling the exploration of a wide range of kernel compositions. While this
approach offers greater flexibility, it also presents challenges in computational efficiency
and risks overfitting due to the complexity of the kernel structures [23]. To address
the limitations of static kernel choices, adaptive kernel selection strategies have been
explored [39]. These strategies maintain a set of candidate kernels and dynamically
select the most suitable one at each iteration based on six adaptive criteria. This adapt-
ability allows the surrogate model to better respond to newly acquired data, which is
particularly beneficial in the early stages of optimization when data is limited.

Despite the advancements in kernel design for BO, several challenges remain. The
vast number of possible kernel compositions can make the search computationally
expensive, and overly complex kernel structures may lead to overfitting and difficulties
with hyperparameter inference.

B.2 Spectral Kernels

Recent developments in spectral kernels have notably enhanced the capabilities of
GP modeling. A key advancement is the concept of sparse spectrum kernels [40],
which are derived by sparsifying the spectral density of a full GP, resulting in a more
efficient, sparse alternative. However, this class of kernels is prone to overfitting and
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implicitly assumes that the covariance between two points does not decay as their
distance increases, an assumption that may not hold in many real-world, non-periodic
applications [41].

Wilson and Adams [23] defined a space of stationary kernels using a family
of Gaussian mixture distributions in the Fourier domain to represent the spectral
density in GP regression. This formulation was later extended to handle multidimen-
sional inputs by incorporating a Kronecker structure for scalability [42]. However, the
covariance functions induced by Gaussian mixture spectral densities are infinitely dif-
ferentiable2, which may be unrealistic for modeling certain physical processes [24].
While being introduced for regression tasks, the role of spectral mixture kernels in BO
remains underexplored. In this paper, we propose and investigate the combination of
Cauchy and Gaussian kernels into a spectral mixture, demonstrating state-of-the-art
performance in optimization tasks.

The Sinc kernel [43] is another notable advancement, parameterizing the GP’s
power spectral density as a rectangular function. This kernel has shown exceptional
performance in signal processing, particularly in tasks like band-limited frequency
recovery and anti-aliasing. The Spectral Delta kernel [44] approximates stationary
kernels through a finite sum of cosine basis functions, offering computational efficiency
by avoiding Fourier integrals. However, its expressiveness is constrained by the discrete
frequency sampling and fixed amplitude scaling.

To address multi-channel dependencies, researchers have generalized spectral ker-
nels to multi-output GP regressions. The Multi-Output Spectral Mixture kernel [45]
explicitly models cross-covariances by representing them as complex-valued spectral
mixtures, capturing inter-channel correlations within a parametric framework. Build-
ing on this, Altamirano and Tobar [46] proposed a nonstationary harmonizable kernel
family, enabling time-varying cross-spectral density estimation for nonstationary pro-
cesses. The Minecraft kernel [47] further innovates by structuring cross-covariances
via block-diagonal spectral representations with rectangular step functions, enhancing
interpretability for high-dimensional outputs.

Appendix C Optimization Experiments

In further validate the efficacy of spectral mixture kernel in continuous domain, we
validate our approach against several baselines across a wide range of optimization
tasks.

C.1 Test Functions

We implement BO with CSM, GSM, and CSM+GSM kernels, and consider three sets
of baseline models:

• Off-the-shelf BO implementations: SE, RQ, and MA52 kernels;
• Advanced BO methods: automatic Bayesian optimization (ABO) [38] and

Adaptive Kernel Selection (ADA) [39];

2A kernel is “differentiable” means functions drawn from a GP with this kernel are differentiable.
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• Other spectral kernels: spectral Delta kernel (SDK) [44] and SINC kernel
(SINC) [43].

We consider a wider range of optimization problems with increasing dimensionality
and complexity:

• Synthetic problems: Branin-2d, Hartmann-3d, Exponential-5d, Hartmann-6d,
Exponential-10d, Rosenbrock-20d, Levy-30d;

• Real-world problems: Robot pushing-4d, Portfolio optimization-5d.

C.1.1 Synthetic Functions

Our first set of experiments involves test functions commonly used for optimization.
The hyperparameters to be optimized are summarized in Table C1.

C.1.2 Simulated Problems

Robot Pushing

We consider a Robot Pushing problem widely used in recent literature [38, 48, 49].
This problem addresses an active learning task for the pre-image learning problem in
robotic pushing. The goal is to determine an optimal pre-image for pushing the robot
to a desired location, with the pushing action as the input and the distance from the
goal location as the output. We test a 4-dimensional input function: robot location
(rx, ry, rθ), and pushing duration tr.

Portfolio Optimization

Another real-world problem is portfolio optimization. Our goal is to tune the hyper-
parameters of a trading strategy so as to maximize investment return. We simulate
and optimize the evolution of a portfolio over a period of four years using open-source
market data.

Since the simulator CVXPortfolio [50] is expensive to evaluate, with each evalua-
tion taking around 3 minutes, evaluating the performance of the various algorithms
becomes prohibitively expensive. Therefore, following Cakmak et al. [51], we do not
use the simulator directly in the experiments. Instead, we build a surrogate func-
tion obtained as the mean function of a GP trained using evaluations of the actual
simulator across 3000 points chosen according to a Sobol sampling design [52].

C.2 Performance Metric

For portfolio optimization tasks, we directly evaluate performance using investment
returns. For other optimization problems, we employ the log-optimality gap metric:

gap = log(|f∗n − fopt|),

where f∗n is the optimal solution found by the model, and fopt is the true global
optimum.

To quantify algorithmic improvements, we introduce two comparative metrics.
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Relative improvement increase:

(RIspectral −RIbaseline)

RIbaseline
, RI =

f∗n − f0
fopt − f0

;

Optimality gap reduction:

(OGbaseline −OGspectral)

OGbaseline
, OG = f∗n − fopt.

Table C1 Test functions used in our experiments. The analytic form of synthetic test functions, as
well as the global minima, are available in [53].

Objective Function Type Dimension Iterations Input Domain

Branin min 2 15 x ∈ [−3, 3]2

Hartmann min 3 30 x ∈ [0, 1]3

Exponential min 5 60 x ∈ [−5.12, 5.12]5

Hartmann min 6 80 x ∈ [0, 1]6

Exponential min 10 150 x ∈ [−5.12, 5.12]10

Rosenbrock min 20 200 x ∈ [−2.048, 2.048]20

Levy min 30 200 x ∈ [−5, 5]30

Robot Pushing min 4 150

x0 ∈ [−5, 5] (x-position),
x1 ∈ [−5, 5] (y-position),
x2 ∈ [1, 30] (pushing duration),
x3 ∈ [0, 2π] (pushing angle),

Portfolio max 5 200

x0 ∈ [0.1, 1000] (risk parameter),
x1 ∈ [5.5, 8.0] (trade aversion parameter),
x2 ∈ [0.1, 100] (holding cost multiplier),
x3 ∈ [10−4, 10−2] (bid-ask spread),
x4 ∈ [10−4, 10−3] (borrow cost)

C.3 Result Analysis

Figure C1 illustrates the performance of different methods across various optimization
tasks using UCB acquisition function. In nearly all experiments, our method con-
sistently outperforms existing baselines in both low- and high-dimensional settings,
achieving an increase of over 11% in relative improvement, and a reduction of 76% in
optimality gap. We also provide a summarized result in Table 2.

For synthetic problems, the results indicate that both CSM and GSM outper-
form other methods in terms of convergence and optimality gap. Notably, CSM+GSM
demonstrates superior performance across most baseline functions. This performance
advantage grows with the dimensionality of the problem. For the conventional ker-
nels, performance varies significantly depending on the task. Specifically, single kernels
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perform as good on Branin-2d, a simple, low-dimensional problem where all methods
show similar performance.

As we transition to more practical objective functions, the advantages of a more
flexible and computationally efficient model become clear. Each type of spectral mix-
ture kernel outperforms all other methods, with the one using both Gaussian and
Cauchy components delivering the best performance. As a result, the log optimality
gap is nearly two orders of magnitude smaller compared to standard BO methods
using conventional kernels.

(a) Branin-2d (b) Hartmann-3d (c) Exponential-5d

(d) Hartmann-6d (e) Exponential-10d (f) Rosenbrock-20d

(g) Levy-30d (h) Robot-4d (i) Portfolio-5d
Fig. C1 Performance of different test functions and algorithms across 10 repetitions using UCB
acquisition function.

C.4 Alternative Performance Metric

To align with our theoretical analysis, we also conducted experiments using the mean
average regret metric, in addition to the original optimal value and optimality gap
metrics. The results, depicted in Figure C2, demonstrate consistent advantages of the
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proposed CSM and GSM kernels over conventional approaches (MA52, RBF, RQ)
across multiple test functions.

(a) Hartmann-3d (b) Hartmann-6d (c) Robot-3d (D) Robot-4d
Fig. C2 Results for the average mean regret over iterations using UCB as the acquisition function.

C.5 Alternative Acquisition Functions

To address potential bias from acquisition function selection, we repeated experiments
using EI and PI alongside UCB. Results show that our approach outperformed base-
lines regardless of the choice acquisition function in nearly all cases, as shown in
Figures C3 and C4.

C.6 Different Number of Spectral Mixtures

To illustrate the performance differences resulting from varying the number of mix-
ture components, we further compare the performance of spectral mixture kernels
combining Cauchy and Gaussian components, as illustrated in Figure C5. Across all
tasks, there is a noticeable trend where specific configurations of Cauchy and Gaus-
sian components yield superior optimization performance, as indicated by the larger
bubbles. Additionally, the performance varies across tasks, highlighting the interplay
between kernel structure and task-specific characteristics. The results emphasize the
utility of balancing Cauchy and Gaussian components to achieve optimal performance
in diverse optimization scenarios.

Appendix D Implementation Details

Approximation

To validate the flexibility of our proposed spectral mixture kernel, we considered
the approximation of more sophisticated conventional kernels in Section 6.3. The
parameters for source kernels that generate the data are shown in Table D2.

Optimization

The objective is to identify the global optimum of each test function within a lim-
ited number of evaluations. We optimize each acquisition function using the LBFGS
method [54]. We conduct 10 trials for all problems. Mean and standard errors are
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(a) Branin-2d (b) Hartmann-3d (c) Exponential-5d

(d) Hartmann-6d (e) Exponential-10d (f) Rosenbrock-20d

(g) Levy-30d (h) Robot-4d (i) Portfolio-5d
Fig. C3 Optimization performance of different test functions and algorithms across 10 repetitions
using EI acquisition function.

Table D2 Parameters for source kernels
generating the training data. The
lengthscale and outputscale parameters are
the same for all MA52, MA32, and PE.

Parameters Value

number of data 80
number of repetitions 10
number of mixture 10
lengthscale 5
outputscale 4
period 10
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(a) Branin-2d (b) Hartmann-3d (c) Exponential-5d

(d) Hartmann-6d (e) Exponential-10d (f) Rosenbrock-20d

(g) Levy-30d (h) Robot-4d (i) Portfolio-5d
Fig. C4 Optimization performance of different test functions and algorithms across 10 repetitions
using PI acquisition function. Implementation constraint: original implementation of ABO exclusively
uses EI; reported PI results for ABO are EI-based to enable cross-algorithm comparison.

reported in all cases. All models employ UCB as the acquisition function. The kernel
hyperparameters, as well as the observation noise, are inferred via marginal likelihood
maximization after each function evaluation.

Computational Resources

All experiments were performed on an Ubuntu 20.04 server equipped with an AMD
Ryzen 9 5950X CPU (16 cores, 32 threads), 125 GiB RAM, and an NVIDIA RTX
3090 GPU (24 GiB VRAM). The primary storage was a 1.8 TB NVMe SSD.
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(a) Branin-2d (b) Hartmann-3d (c) Exponential-5d

(d) Hartmann-6d (e) Exponential-10d (f) Rosen-20d

(g) Levy-30d (h) Robot Pushing-4d (i) portfolio-5d
Fig. C5 Results for spectral mixture kernels with different number of Cauchy and Gaussian mix-
tures. The x-axis represents the number of Cauchy components, and the y-axis represents the number
of Gaussian components. Different colors are used to distinguish mixtures based on their total num-
ber of components (3, 5, 7, 9). The bubble size represents the inverse of the optimality results, with
larger bubbles indicating better performance.
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Appendix E Technical Proofs

E.1 Proof of Theorem 2

Spectral density S(s) of Cauchy distribution is given in Eq. (8), substituting it into
Eq. (5):

k(τ) =

∫ ∞

−∞

1

πγ

[
1 +

(
s−x0

γ

)2]e2πisτ ds.
To simplify the integral, let:

u =
s− x0
γ

, ds = γdu, s = γu+ x0.

We have

k(τ) =

∫ ∞

−∞

1

πγ(1 + u2)
e2πi(γu+x0)τγdu =

1

π

∫ ∞

−∞

e2πiγuτe2πix0τ

1 + u2
du = e2πix0τ

1

π

∫ ∞

−∞

e2πiγuτ

1 + u2
du.

Next, we calculate the standard integral using contour integration:

I(τ) =

∫ ∞

−∞

e2πiγuτ

1 + u2
du.

where the integrand is:

f(u) =
e2πiγuτ

1 + u2
.

We are interested in integrating this function along the real line. To apply contour
integration, we extend the function to the complex plane. The function 1

1+u2 has
simple poles at u = i and u = −i. The residues at these poles are:

Res(f, i) = lim
u→i

(u− i)
e2πiγuτ

1 + u2
=
e−2πγτ

2i
,

Res(f,−i) = lim
u→−i

(u+ i)
e2πiγuτ

1 + u2
=
e2πγτ

−2i
.

We use the residue theorem, which states that the integral of a meromorphic func-
tion around a closed contour is 2πi times the sum of the residues inside the contour.
By closing the contour in the upper half-plane (since e2πiγuτ decays for large u in the
upper half-plane), we get: ∫ ∞

−∞

e2πiγuτ

1 + u2
du = 2πi · Res(f, i).

Thus,
I(τ) = πe−2π|γτ |.
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Substituting this result into the expression for k(τ), we get:

k(τ) = exp(2πix0τ)exp(−2π|γτ |) = [cos(2πx0τ) + i sin(2πx0τ)] exp(−2π|γτ |).

Exploiting the symmetry of S(s) gives

k(τ) = exp (−2π|γτ |) cos(2πτx0).

E.2 Proof of Theorem 3

We first state a theorem that gives an upper bound for information gain γ(T ) with a
particular kernel k, given that Bk(T∗) is known.

Theorem 5 (Srinivas et al. [34]) Suppose that D ⊂ Rd is compact. Let Bk(T∗) =
∑

s>T∗
λh,

where {λh} is the operator spectrum of k with respect to the uniform distribution over D.
Pick τ > 0, and let nT = C4T

τ (log T ) with C0 = 2V(D)(2τ + 1). Then, the following bound
holds true:

γ(T ) ≤ 1/2

1− e−1
max

r=1,...,T

(
T∗ log

(rnT
σ2

)
+ C0σ

−2(1− r/T )(log T )
(
T τ+1Bk(T∗) + 1

))
+O(T 1−τ/d)

for any T∗ ∈ {1, . . . , nT }.

To obtain the tail bound on Bk(T∗) =
∑

h>T∗
λh, we further draw on a theorem

of Widom [55], which gives the asymptotic behavior of the operator spectrum {λh}.

Assumption 6 We assume that the covariate distribution µ has a bounded density, such that∫
I{∥x∥≤T}µ(x)

d/(2ν+d) dx ≤ C̃,

where C̃ is a constant independent of T > 0.

Assumption 6 provides a controlled growth of µ(x), ensuring that the covariates
are not overly concentrated in any specific region, which could lead to numerical
instabilities or biased estimation. Distributions that satisfy this assumption include
uniform, Gaussian, and truncated power-law distributions, among others.

Theorem 7 (Widom [55]) Define

ψ(ε) = (2π)−d
∫
I{µ(x)S(s)>(2π)−dε} dx dω, (E6)

where S(s) is the spectral density and h = h(ε) = min{h′ | λh′ > ε}. we have

ψ(ε) ∼ h(ε), ε→ 0.

where both ψ(ε) and h(ε) are non-increasing and h(ε) is unbounded as ε→ 0.
When ψ(ε) is strictly decreasing and ψ−1(h+o(h)) ∼ ψ−1(h) for h→ ∞. The asymptotic

distribution of eigenvalues λh satisfies

λh ∼ ψ−1(h), h→ ∞.
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Theorem 5 gives a upper bound on γ(T ), provided that Bk(T∗) =
∑

h>T∗
λh is

known. Theorem 7 gives the asymptotic behavior of λh, so we can compute Bk(T∗).
Following this path, we first show how λh is derived.

Lemma 8 Let K(τ) be the CSM kernel with d-dimensioanl inputs. Define the bounded support
measure µT with density µT (x) = I{∥x∥≤T}µ(x), and let {λh} be the spectrum of K(τ) w.r.t.
µT . Then, for all T > 0 large enough, there exists a h0 such that

λh ≤ Ch−(d+1)/d ∀h ≥ h0.

Here, C is a constant independent of T .

Proof The joint distribution of d independent standard Cauchy is given by

λ(η) =
Γ
(
d+1
2

)
π

d+1
2

· 1

(1 + ||η||2)
d+1
2

.

To upper bound Eq. (E6) for the measure µT , we first transform ψT (ε) into polar coordi-
nates. Recall that dω = Ad−1ηd−1dηdσ with dσ the uniform distribution on the unit sphere,
and Ad−1 = 2πd/2/Γ(d/2). If y = 1 + ||η||2, q = (d+ 1)/2, then

ψT (ε) = C1

∫ ∞

0

∫
∥x∥≤T

I{y−qµ(x)>c1ε}η
d−1 dx dη, (E7)

where

C1 =
21−dπ−d/2

Γ(d/2)
, c1 = π.

Let ρ = (c1ε)
−1. Note that ρ→ ∞ as ε→ 0. Now,

ηd−1(dη) =
1

2
(y − 1)

d
2−1 dy,

so that

ψT (ε) = C2

∫
∥x∥≤T

∫ ∞

1
I{yq<ρµ(x)}G(y) dy dx (E8)

with C2 = 1
2C1, G(y) = (y − 1)

d
2−1. Integrating out y, we have that

ψT (ε) ∼ C2
2

d
ρ

d
2q

∫
I{∥x∥≤T}µ(x)

d
2q dx.

The integration leaves us with (ρµ(x))1/q − 1)2/d. We can use the binomial theorem in order

to write that as a polynomial in (ρµ(x))1/q, which is dominated by the highest degree term

as ε → 0. Moreover, since (y − 1)2/d ≤ y2/d for y ≥ 1, the right-hand side is also an
exact upper bound once ρ ≥ ρ0 := sup{µ(x)−1 | ∥x∥ ≤ T}. Note that q = (d + 1)/2 If

C3 = C2
2
d C̃c

−2q/d
1 , then ψT (ε) ≤ C3(1 + o(1))ε−2q/d as ε→ 0. Widom’s theorem gives that

s− 1 ≤ C3(1 + o(1))(λh)
−d/2q. The lemma follows by solving for λh. □

Therefore, Bk(T∗) =
∑

h>T∗
= O

(
T

1−(d+1)/d
∗

)
. Following Srinivas et al. [34], we

choose T∗ = (TnT )
d/(1+d)(log(TnT ))

−(1+d)/d, so that the upper bound γ(T ) becomes:

max
r=1,...,T

(
T∗ log

(rnT
σ2

)
+ σ−2(1− r/T )× (C3T∗(log(TnT )) + C0(log T ))

)
+O(T 1−τ/d)
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with nT = C0T
τ (log T ). The maximum of upper bound γ(T ) over r is

O(T∗ log(TnT )) = O(T (τ+1)d/(d+1)(log T )). Next, we choose τ = d/(d2 + d + 1) to
match this term with O(T 1−τ/d). Plugging this in, we can obtain γ(T ).

Lemma 9 Let K(τ) be the GSM kernel with d-dimensional inputs. Then, for all T > 0 large
enough, there exists a h0 such that

λh ≤ C ·Bh1/d

∀h ≥ h0.

where B < 1, C is a constant independent of T .

Proof The joint distribution of d independent standard Gaussian distributions is given by

λ(η) =
1

(
√
2π)d

exp(−||η||2

2
)

For covariate distributions µ(x) that satisfy Assumption 6, the same decay rate holds for
λh, while the constants might change [34]. Therefore, without loss of generality, we assume
µ(x) = N(x|0, I). In this case, the eigenexpansion of k is known explicitly for d = 1 [56]:

λh = (
1

2A
)1/2+h, A =

1

4
+

1

2
+

√
5

16
.

Following the analysis of Seeger et al [57], in cases where d > 1, a tight bound can be obtained
on λh:

λh ≤ (
1

2A
)d/2(B)h

1/d

where B < 1, A is a constant independent of T .
Because the same decay rate holds for any µ(x) satisfying Assumption 6. The lemma

follows by keeping the decay rate Bh1/d

while changing the constant term. □

Upper bound on information gain w.r.t λh satisfying Lemma 9 is given in Srinivas
et al. [34]. This completes our proof for Theorem 3.
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