
A Bayesian Framework Coupling Discrete and 
Continuous Variables for Accelerated Catalyst Discovery



Content

2

1
• Background

2
• Method Details

3
• Results

4
• Conclusion



Background
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High-dimensional design space: The number of 

parameters grows rapidly, making exhaustive search 

impractical.

Mixed discrete and continuous variables: The 

coexistence of categorical (e.g., catalyst type) and 

continuous parameters (e.g., temperature, pressure) 

complicates modeling.

High experimental cost & limited samples: Each 

experiment is time- and resource-intensive, leading to data 

scarcity and unreliable model training.

Challenges in General 

Experimental Design

High-dimensional design space
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One-Factor-at-a-Time (OFAT) Method：
1. Change only one parameter per experiment while keeping all others 

constant.

2. Observe the effect of that single factor on the outcome.

Limitations:

1. Fails to capture interaction effects between variables.

2. Becomes inefficient or infeasible in high-dimensional design spaces.

Design of Experiments (DOE) Method：
1. Systematically varies multiple factors simultaneously according to a 

statistical design

2. Analyzes both main effects and interactions among factors.

Limitations:

1. The number of experiments still grows exponentially with dimensionality.

2. Struggles with mixed discrete and continuous variables common in 

materials or chemical systems.



Bayesian Optimization

5

1. Initial points

2. Fit Surrogate Model

3. Optimize Acquisition Function

4. Query next point

5. Add new point to dataset

6. Return to Step 2 until finish

Zitierweise: Angew. Chem. Int. Ed. 2023, 62, e202313068

Adaptive
Sample-

efficient

Uncertainty-

aware
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Surrogate Model (Gaussian Process)

Consider a finite collection of data pairs Dn = (X,y). Under the 

assumption of linear regression model with Gaussian noise, 

we  have   

Where σn denotes the standard variance of noise; K denotes 

the kernel matrix, which represents the property of the space.

f* is the value we want to predict, like performance of catalysts 

recipe.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X.
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Acquisition Function (AFs)

Acquisition functions are the utility functions that 

guide the search to reach the optimum of the 

objective function by identifying where to sample 

next. The guiding principle behind AFs is to strike a 

balance between exploration and exploitation.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X.



Limitation of BO
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• Real experiments involve 

both discrete and 

continuous parameters 

(e.g., catalyst type, 

temperature).

• Standard GP-based BO 

assumes smooth 

continuous spaces, 

causing instability with 

categorical inputs.

Handling Mixed 

Variables

• Experimental optimization 

often requires improving 

several conflicting 

metrics (e.g., activity vs. 

stability).

• However, acquisition 

design and convergence in 

Pareto fronts become 

more complex as 

objectives increase.

Balancing Multiple 

Objectives

• Incorporating priors into 

surrogate models improves 

efficiency but risks 

introducing bias.

• Hybrid BO frameworks aim 

to balance data-driven

learning and expert-guided

constraints.

Integrating Domain 

Knowledge
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Theorem 1 （Bochner’s Theorem）: A complex-valued function k on     is the kernel of a 

weakly stationary, mean square continuous complex-valued random process on     if and only if 

it can be represented as 

P
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Gaussian Spectral Density:

Cauchy Spectral Density:

Cauchy-Gaussian Spectral Mixture:
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For categorical inputs, we modify the Hamming kernel:

To handle mixed input z = [h, x], we combine the spectral mixture kernel and Hamming kernel together 

and propose the composite kernel

λ∈[0,1] is a trade-off parameter
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Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020.



SMKBO Methods Details

12

Trust Region & Alternating Optimization

Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, 2021.
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Oxidative Coupling of Methane
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Data from ACS Catal. 2020, 10, 921−932
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Separated Combined

To quantify the performance of optimization 

methods, the concepts of Enhancement Factor 

(EF) and Acceleration Factor (AF) are introduced. 



Results

15

Noisy(5% std)Noisy(1% std)

S

e

p

C

o

m

b

a

b

c

d

Noise test setup: Gaussian noise (μ = 0, σ = 1% or 

5%) of the global optimum target (69.9) added to 

target value (69.9) at each iteration.

Key observations:

• SMKBO maintains higher robustness at 1% 

and 5% noise compared with others.
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The results after 80 iterations using different combinations of CSK and GSK.

Remaining stable across different compositions

Separated Combined
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1. Explore first, Exploit later.

2. A certain level of exploration is 

maintained even after convergence.

3. Component 2 and the Support 

temporarily converged to a local 

optimum before escaping to explore a 

better region of the search space.

4. verifications are performed after 

switching the convergence criterion.
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path1
path2

1. The algorithm progresses 

diagonally from low to high target 

values.

2. Shows two paths leading to high 

performance.

Numbers indicate points that outperform the 

previous best performance.
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Urea-Selective Catalytic Reduction (SCR)

Results over 10 runs using UCB. Each cell shows mean 

(±SE). ABO failed on Rosenbrock-20d and Levy-30d.
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1. SMKBO exhibits a stronger capability in capturing complex relationships in the experimental 

parameter space. 

2. GSM decays with squared distance (captures smooth regions), while CSM decays linearly 

with distance (handles outliers better).

3. By packing discrete parameters into one variable, BO performance improves as the surrogate 

handles a single discrete input, simplifying kernel interactions and enabling better learning of 

parameter correlations.

4. SMKBO behaves more like a human scientist, featuring an explore-first, exploit-later strategy 

and performing verifications after switching the convergence criterion.
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