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Motivation

Background. Accurately learning consumer demand is central to dynamic
decision making in digital marketplaces. In many applications, sellers must
determine both which products to display and what prices to post to
sequentially arriving customers.

Gap. Prior work typically treats assortment or pricing alone.
Single-market algorithms learn from scratch, wasting useful information
from auxiliary markets.

Our goal. Bring transfer to contextual joint assortment–pricing under
MNL bandit feedback: leverage multiple sources to accelerate learning in a
designated target market.
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Related Work: Assortment and Pricing under MNL

Online assortment or pricing under MNL. Non-contextual MNL
bandits (Agrawal et al. 2017, Cheung & Simchi-Levi 2017); contextual
MNL bandit (Agrawal et al. 2018, Oh & Iyengar 2019, Chen et al. 2020, Oh
& Iyengar 2021).

Online assortment and pricing under MNL. Miao & Chao (2021)
analyzes a non-contextual formulation and design a cycle-based TS policy
whose regret scales with the catalog size N; we treat the contextual case,
and our regret depends only on the assortment size K . Erginbas et al.
(2025) considers contextual formulation; our approach focuses on
cross-market transfer, addressing the attendant estimation issues in
aggregating and debiasing. Even without transfer, our obtained regret
bound scales as Õ(

√
d), strictly sharper than their Õ(d) dependence.
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Related Work: Bandits for discrete and combinatorial decisions.

Contextual bandits and UCB algorithm. Contextual linear and
generalized linear bandits (Abbasi-Yadkori et al. 2011, Dani et al. 2008,
Rusmevichientong & Tsitsiklis 2010, Filippi et al. 2010, Li et al. 2017). The
Upper Confidence Bound (UCB) method and its variants (Chen et al. 2013,
Kveton et al. 2015). UCB algorithms in MNL Bandits (Agrawal et al. 2017,
Chen et al. 2020, Oh & Iyengar 2021).

Our distinction. Existing literature is less developed in the regime where
assortment selection must be jointly coupled with continuous pricing under
bandit feedback. We work within the established MNL paradigm, adopt a
UCB-type approach, and, crucially, address the joint, contextual decision
space that inherently mixes discrete assortments with continuous prices.
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Related Work: Transfer and meta learning

Transfer and meta learning. Prior studies clarify when and how
auxiliary data improve estimation or linear bandits: supervised transfer
with sparse-contrast (Bastani 2021); meta-dynamic pricing with a shared
prior and observed linear demand (Bastani et al. 2022); covariate-shift
transfer from one offline source with invariant rewards (Cai et al. 2024);
robust multi-task bandits that trim outliers but omit price
optimization (Xu & Bastani 2024); and estimation-only transfer (Li et al.
2022, Tian & Feng 2022, Liu et al. 2023).

Our distinction. They leave open the design of transfer mechanisms
tailored to MNL bandits under mixed decision spaces and multi-source
utility shifts; nor do they incorporate revenue-maximising price choice.
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Contribution

Model and algorithmic innovation. We propose an
aggregate–then–debias pipeline tailored to the utility-shift structure.
Building on the estimates, we design a two-radius UCB decision rule. The
first radius tracks self-normalized variance; the second radius upper-bounds
transfer bias inherited from cross-market aggregation.

Theoretical innovation. We derive matching upper and lower bounds
with a decomposition that isolates two statistical sources of uncertainty
introduced by transfer: a variance term governed by self-normalized
information, and a transfer-bias term driven by cross-market heterogeneity.

Practical guidance. We obtain managerial insights on when and how
much transfer helps. Gains accrue with H as long as cross-market
heterogeneity s0 remains sufficiently sparse; once discrepancies become
diffuse, the bias term dominates and transfer benefits taper off.
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Model, Choice and Revenue

Assortments. Catalog set [N], feasible sets SK := {S ⊆ [N] : |S | ≤ K}.
Decision. Choose (St , pt) with St ∈ SK , pt ∈ RN .
Utility model. vit = ⟨x it ,θ⟩ − ⟨x it ,γ⟩ pit + εit , i ∈ St ,.
MNL choice probabilities.

qt(i |St , pt) =
exp(vit)

1 +
∑

ℓ∈St exp(vℓt)
, i ∈ St . (1)

Expected revenue.

Rt(St , pt) :=
∑
i∈St

pit qt(i | St , pt). (2)

Clairvoyant Policy.

(S∗t , p
∗
t ) ∈ argmax

S∈SK , p∈RN

∑
i∈S

pit
exp(vit)

1 +
∑

j∈S exp(vjt)
. (3)

Regret over horizon T .

Regret(T ;π) =
T∑

t=1

Rt(S
∗
t , p
∗
t )−

T∑
t=1

Rt(St , pt).
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Cross-market Transfer

Target ((0)). v
(0)
it = ⟨x (0)

it ,θ(0)⟩ − ⟨x (0)
it ,γ(0)⟩pit + εit .

Source ((h)). v
(h)
it = ⟨x (h)

it ,θ(h)⟩ − ⟨x (h)
it ,γ(h)⟩pit + εit , h ∈ [H]

Assumption (Homogeneous Covariates with Bounded Spectrum)

For h ∈ {0} ∪ [H], x (h)
it

i.i.d.∼ Px supported on bounded X ⊂ Rd , E[x it ] = 0,
Σ = E[x itx⊤it ] with 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cmax < ∞.

Assumption (Task Similarity)

The maximum l0-norm of the difference between target and source coefficients
is bounded:

max
h∈[H]

(
∥ν(0) − ν(h)∥0

)
≤ s0.
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Optimisitic Utility Cobstruction

Construct Cm, an ellipsoidal confidence region containing ν(0) w.h.p.

v̄
(0)
it (p) = ⟨x (0)

it , θ̂⟩ − ⟨x (0)
it , γ̂⟩ p + uit(p),

with a two-radius bonus

uit(p) = αm ∥x̃ (0)
it (p)∥

W−1
m−1

+ βm ∥x̃ (0)
it (p)∥∞. (4)

v̄
(0)
it (p) may conflicts with positive price sensitivity Assumption. Enforce

decreasing L0-Lipschitz via:

Lemma (Monotone–Lipschitz envelope)

If v̄it(p) ≥ vit(p) on [0, P̄], then ṽit(p) := minp′≤p

{
v̄
(0)
it (p′)− L0 (p − p′)

}
is

decreasing, L0-Lipschitz, and vit(p) ≤ ṽit(p) for all p.

Choose

(St , pt) ∈ argmax
S∈SK , p∈RK

∑
i∈S pi exp(ṽit(pi ))

1 +
∑

j∈S exp(ṽjt(pj))
,

which reduces to a one-dimensional fixed point problem Wang (2012).
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Per-period & Rolling Information Matrix

Per-period Fisher Information Matrix:

I(h)
t (ν) =

∑
i∈S(h)

t

q
(h)
it (ν) x̃

(h)
it x̃

(h)⊤
it −

∑
i∈S(h)

t

∑
j∈S(h)

t

q
(h)
it (ν) q

(h)
jt (ν) x̃

(h)
it x̃

(h)⊤
jt .

Rolling Fisher within episode m:

V
(h)
t =

t∑
u=τm−1+1

I(h)
u (ν̂m), ∀h ∈ 0 ∪ [H].

V
(0)
t is used to check an identifiability gate that triggers forced exploration.

Algorithm 1: Subroutine: OfferAssortmentAndPrice

Input: t, τm, qm, V
(0)
t , C̃min, K , P̄, ν̂m, αm, βm, Wm−1

Output: Decision (S
(0)
t , p(0)

t )

1 if τm − t ≤ qm and λmin(V
(0)
t ) ≤

KqmC̃min

2
then

2 Randomly choose S
(0)
t ∈ SK and p(0)

t ∼ Uniform([0, P̄]N );

3 else
4 (S

(0)
t , p(0)

t )← argmax
S∈SK , p∈RN

R̃t (S, p;αm, βm,Wm−1);

5 return (S
(0)
t , p(0)

t );
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Episodic Information Matrix

Episodic Fisher Information Matrix:

Wm−1 := V (0)
τm−1 +

H∑
h=1

ωh V
(h)
τm−1 . (5)

Wm−1 appears only in the variance bonus ∥x̃∥
W−1

m−1
of (4).

(i) Homogeneous covariates (Assumption 2.1). Take ωh = 1. Then
λmin(Wm−1) grows Ω̃(1+H), and ∥x̃∥

W−1
m−1

contracts at Õ(1/
√

1+H).

(ii) Heterogeneous covariates. Temper ωhV
(h)
τm−1 by: sample reweighting

(density-ratio correction inside each V (h)); or market weights ωh ∈ [0, 1]
from mismatch scores (e.g., ωh = {1 + χ̂2(P0∥Ph)}−1). This preserves PD
while guarding bias.
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Aggregate-then-debias Pipeline

The horizon T is partitioned into episodes m = 1, 2, . . . ,M, where episode
m has length τm = 2m−1. Thus M = ⌈log2 T⌉ and parameter updates occur
only O(logT ) times.
At the start of each episode m, we update the parameter estimates using
data from the preceding episode:
(i) Aggregate with source market data.
(ii) Debias with target market data.

Algorithm 2: Subroutine: AggregateThenDebias

Input: Source losses {L(h)
t }h∈[H], t∈Tm−1 , target losses {L(0)

t }
t∈T (0)

m−1
, regularization λm

Output: Episode-m parameter ν̂m
// (i) weighted aggregate on sources from episode m − 1

1 ν̂
(ag)
m ← argmin

ν∈R2d
1

H|Tm−1|
∑

h∈[H]

∑
t∈Tm−1

L(h)
t (ν);

// (ii) debias with target data from episode m − 1
2 δ̂m ← argmin

δ∈R2d
(

1
|T (0)

m−1|

∑
t∈T (0)

m−1
L(0)

t (ν̂
(ag)
m + δ) + λm∥δ∥1

)
;

3 return ν̂m ← ν̂
(ag)
m + δ̂m;
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Complete Algorithm

TJAP-CWF: Transfer joint assortment–pricing with cross-market
weighted information

Algorithm 3: TJAP-CWF

Input: Streaming data {{x(h)it }i∈[N], S
(h)
t , p(h)

t , y (h)
t }t≥1 for h ∈ {0} ∪ [H]

Initialize: V
(0)
0 ←02d×2d ; V

(h)
0 ←02d×2d for all h ∈ [H]

1 for t ∈ [2d ] do
2 Randomly choose S

(0)
t ∈SK and p(0)

t ∼Uniform([0, P̄]N );

3 V
(0)
t ←V

(0)
t−1 + 1

K2
∑

i∈S
(0)
t

x̃(0)it (x̃(0)it )⊤;

4 for each episode m = 2, 3, . . . do
5 Compute τm ← 2m−1, Tm ← {τm−1+1, . . . , τm};
6 ν̂m ←AggregateThenDebias(L(h)

t ,L(0)
t , λm)

7 Set Wm−1 ← V
(0)
τm−1 +

∑H
h=1 ωh V

(h)
τm−1 ;

8 Reset V
(h)
τm−1 ← 02d×2d , ∀h ∈ {0} ∪ [H];

9 for each period t ∈ Tm do
10 (S

(0)
t , p(0)

t )←OfferAssortmentAndPrice(t, τm, qm, V
(0)
t , ν̂m, αm, βm,Wm−1)

11 for h ∈ {0} ∪ [H] do
12 V

(h)
t+1 ← V

(h)
t +

∑
i∈S

(h)
t

q
(h)
it (ν̂m) x̃(h)it (x̃(h)it )⊤ −∑

i∈S
(h)
t

∑
j∈S

(h)
t

q
(h)
it (ν̂m)q

(h)
jt (ν̂m) x̃(h)it (x̃(h)jt )⊤;
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Regret Upper Bound

THM. Regret Upper Bound (Informal)
Running Algorithm 3, the cumulative regret up to horizon T satisfies

E
[
Regret(T ;π)

]
≤ C0

√
KT logK

L0

(√d logT

H + 1
+ s0

√
log(dT )

)
(6)

where C0,C1 > 0 are absolute constants depending only on Cmin,Cmax.

(i) Variance gain. With homogeneous covariates, self-normalized widths
scale as 1/

√
1+H and yield the factor

√
1/(1+H).

(i) Transfer bias. The second term comes from sparse target-only shifts; its
radius scales with s0. If s0=0, the bias vanishes and we keep the full
1/

√
1+H speedup.

(iii) Baselines. Setting H=0 recovers the contextual rate. Compared to
CAP, we match

√
KT (up to logs) but improve dimension from d to

√
d via

sharper concentration.
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Regret Lower Bound

THM. Regret Lower Bound (Informal)

For any d ≥ 1, K ∈ [d ], and s0 ∈ {0, 1, . . . ,min{K , d}}, there exists a
constant c2 = c2(L0,P,Cmin,Cmax) > 0 such that for all horizons T ,

inf
π

supE
[
Regret(T ;π)

]
≥ c2

(√
K (d − s0)T

1 + H
+ s0

√
K T

)
. (7)

(i) Shared coordinates. The
√

K(d−s0)T/(1+H) term is the variance floor
on the coordinates where sources and target agree; homogeneous covariates
give the 1/

√
1+H gain.

(ii) Target-only coordinates. The s0
√
KT term reflects adaptation to

coordinates unobserved in sources; no 1/
√

1+H improvement is possible
there.
(iii) Tightness. Up to polylog factors and constants, the upper and lower
bounds match in K ,T , d ,H, s0.
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Experimental Setup

Synthetic Data: auxiliary markets H ∈ {0, 1, 3, 5}, feature dimension
d ∈ {10, 20, 50}, sparsity level s0 ∈ {0.2d , 0.3d}, catalog and assortment
capacity (K ,N) = (5, 30), (5, 100), time horizon T = 2000. A total of
3 × 2 × 2 = 12 configurations.

Baselines and Protocol: CAP (Erginbas et al. 2025) is a contextual joint
assortment–pricing algorithm, a direct comparison in the no-transfer
specialization. M3P (Javanmard et al. 2020) and ONS–MPP (Perivier &
Goyal 2022) are pricing-only methods; to place them in the JAP setting, at
each period we rank items by the current utility estimate, select the top K
as the assortment, and apply the method’s posted prices to this subset.
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Results & Findings

(a) d = 10, s0 = 2, K = 5, N = 30 (b) d = 20, s0 = 4, K = 5, N = 30 (c) d = 50, s0 = 10, K = 5, N = 30

(i) Transfer helps. Within TJAP, regret decreases monotonically with
the number of sources H.
(ii) CAP vs. TJAP. With transfer enabled, TJAP consistently
outperforms CAP. Even in the no-transfer case (H = 0), TJAP remains
stronger than CAP.
(iii) JAP vs. pricing-only. Even without transfer (H = 0), TJAP
outperforms the pricing-only baselines (M3P and ONS–MPP).
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Conclusion

Algorithmic: We propose a transfer learning framework for joint
assortment–pricing that leverages source markets to accelerate learning,
featuring aggregate–then–debias pipeline and two-radius UCB.

Theoretical: We establish matching upper and lower regret bounds,
showing that transfer substantially accelerates learning when markets share
exploitable structure.

Empirical: Simulations confirm consistent regret reductions compared with
target-only baselines, underscoring the value of cross-market information
for dynamic assortment–pricing.

Future work: Adaptive selection of informative sources and extending
beyond ℓ0-sparsity to richer relatedness notions, further broadening the
reach of transfer learning in operational decision-making.
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