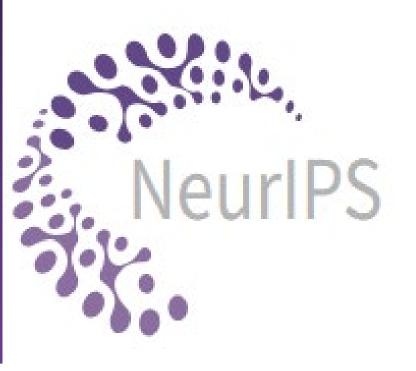
Transfer Faster, Price Smarter:

Minimax Dynamic Pricing under Cross-Market Preference Shift

Yi Zhang, Columbia University | Elynn Chen, New York University | Yujun Yan, Dartmouth College



Motivation

- Problem: Dynamic pricing is vital for e-commerce, ridesharing, airlines.
- Challenge: New markets suffer from data scarcity, while mature markets generate abundant logs.
- Gap: Existing transfer methods assume identical utilities across markets, failing under preference shift.
- Goal: Design a framework to leverage auxiliary markets while provably handling structured model shift.

O2Ooff

Fixed Log

Streaming Data

Cross-Market Transfer Dynamic Pricing

Aggregate → *Debias Framework*

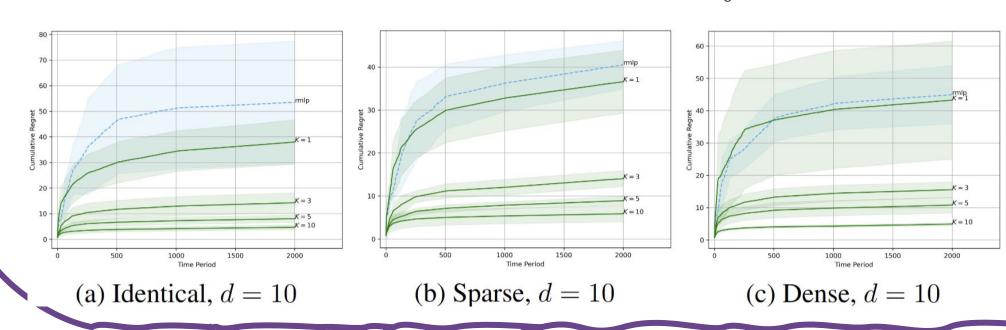
- The intuition behind this framework arises naturally from a structured handling of the bias-variance tradeoff.
- Pooling all market data yields a low-variance, high-bias estimate, as it ignores cross-market differences. Instead of directly relying on this, we treat it as a rough draft and perform careful corrections.
- This resembles an editor who adjusts only problematic sentences, preserving valuable shared information.
- Debiasing acts as a precision tool that corrects for local market deviations without discarding useful global patterns.

- Key insight: CM-TDP bridges meta-learning, robust statistics, and bandits to deliver practical transfer pricing.
- Impact: Enables faster revenue convergence in new markets while being robust to preference differences.
- Future work: (i) Handling covariate shift; (ii) robust detection against adversarial markets; (iii) extending similarity measures beyond sparsity.

Two Utility Classes

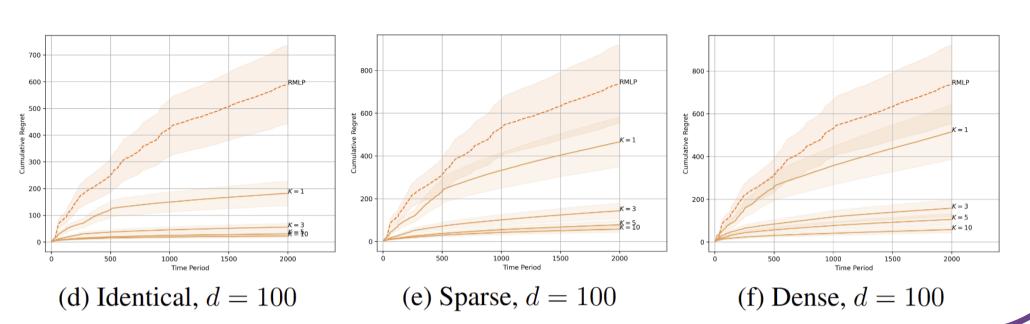
Linear Utility Function

- Estimation: Maximum likelihood estimation
- Utility Function: $v_t^{(k)} = x_t^{(k)} \cdot \beta^{(k)} + \varepsilon_t$, $k \in \{0\} \cup [K]$
- Task Similarity: $\max_{k \in [K]} \|\beta^{(k)} \beta^{(0)}\| \le s_0$
- Regret Upper Bound: $\mathcal{O}(\frac{d}{\kappa} \cdot \log d \cdot \log T + s_0 \cdot \log d \cdot \log T)$
- Regret Lower Bound: $\mathcal{O}(\frac{d}{\kappa} \cdot \log T + s_0 \cdot \log \frac{d}{s_0} \cdot \log T)$



RKHS Utility Function

- Estimation: Kernel Logistic Regression
- Utility Function: $v_t^{(k)} = g^{(k)}\left(x_t^{(k)}\right) + \varepsilon_t, g^{(k)} \in \mathcal{H}_k, k \in \{0\} \cup [K]$
- Task Similarity: $\max_{k \in [K]} ||g^{(k)} g^{(0)}||_{K} \le H$
- Regret Upper Bound: $O(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \cdot T^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}} \cdot T^{\frac{1}{2\alpha+1}})$
- Regret Lower Bound: $O(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \cdot T^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}} \cdot T^{\frac{1}{2\alpha+1}})$



Two Transfer Schemes

- 020_{on}: each episode recomputes an aggregate estimator from preceding episode's source data and debiases using the matching target obs. This persistent adaptation leads to faster regret.
- 020_{off}: employs phased transfer only during initial episode, resulting in asymptotic regret growth rates that eventually match single-market learning, though with improved constants.

Online-to-Online

```
Algorithm 1: CM-TDP-O2O<sub>on</sub>
Input: Streaming source data \{(p_t^{(k)}, x_t^{(k)}, y_t^{(k)})\}_{t\geq 1} for k\in [K]; streaming target contexts
                                                                                                                                    // episodes
       Compute \ell_m = 2^{m-1}, \mathcal{T}_m = \{\ell_m, \dots, \ell_{m+1} - 1\}
              \leftarrow \texttt{MLE\_or\_KRR}\big(\{(p_t^{(k)}, x_t^{(k)}, y_t^{(k)})\}_{t \in \mathcal{T}_{m-1}, k \in [K]}\big)
      // (ii) debias with previous episode's target data
     \widehat{\delta}_m \leftarrow \mathtt{Debias}\big(\widehat{g}_m^{(ag)}, \{(p_t^{(0)}, x_t^{(0)}, y_t^{(0)})\}_{t \in \mathcal{T}_{m-1}}\big).
// For functions MLE_or_KRR and Debias, call Algorithm 2 for linear utility (or
           Algorithm 3 for non-parametric utility)
      for t \in \mathcal{T}_m do
                                                                                                                       // episode pricing
          Post price \widehat{p}_t^{(0)} = h(\widehat{\mathring{g}}_m^{(0)}(x_t^{(0)})); observe y_t^{(0)} and store data.
```

Offline-to-Online

```
Algorithm 4: CM-TDP-O2Ooff
  Input: Offline source market data \{(p_t^{(k)}, x_t^{(k)}, y_t^{(k)})\}_{t \in \mathcal{H}^{(k)}} for k \in [K]; feature matrix \{x_t^{(0)}\}_{t \in \mathbb{N}}
              for the target market
   /* ****** Phase 1: Update with transfer learning ******
1 Call Algorithm 2 or 3 to calculate the initial aggregated estimate \hat{g}^{(ag)} using entire source market
    data \{(p_t^{(k)}, X_t^{(k)}, y_t^{(k)})\}_{t \in \mathcal{H}^{(k)}} for k \in [K]
2 Apply the price \widehat{p}_{1}^{(0)} := h(\widehat{\mathring{g}}^{(ag)}(x_{1}^{(0)})) and collect data (\widehat{p}_{1}^{(0)}, x_{1}^{(0)}, y_{1}^{(0)}). 3 for each episode m = 2, \ldots, m_{0} do
        Set the length of the m-th episode: \ell_m := 2^{m-1}
        Call Algorithm 2 or 3 to calculate the debiasing estimate \widehat{\delta}_m using target market data
          \{(p_t^{(0)}, x_t^{(0)}, y_t^{(0)})\}_{t \in [2^{m-2}, 2^{m-1}-1]} and aggregated estimate \hat{\mathring{g}}^{(ag)}.
                                                               \hat{\mathring{g}}_m^{(0)} := \hat{\mathring{g}}^{(\mathrm{ag})} + \hat{\delta}_m.
        For each time t, apply price \hat{p}_t^{(0)} := h(\hat{g}_m^{(0)}(x_t^{(0)})) and collect data (\hat{p}_t^{(0)}, x_t^{(0)}, y_t^{(0)}).
    /* ***** Phase 2: Update without transfer learning ******
s for each m \geq m_0 + 1 do
        Set the length of the m-th episode: \ell_m := 2^{m-1}
        Call Algorithm 2 or 3 to calculate \hat{g}_{m}^{(0)} using target market data
      \{(p_t^{(0)},x_t^{(0)},y_t^{(0)})\}_{t\in[2^{m-2},2^{m-1}-1]}. For each time t, apply price and collect data.
   Output: Offered price \widehat{p}_t^{(0)}, t \geq 1
```