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Introduction

o Challenge: In Dynamic pricing, new markets suffer from data
scarcity, while mature markets generate abundant logs.

o Gap: Existing transfer methods assume identical utilities across
markets, failing under preference shift.
@ Model: A general random utility model for the market value of the
product is given by
0
v = g9 x) + e, (1)

In cross-market transfer learning, we observe additional samples from
K sources markets indexed by superscript ) for k € [K]:

v = gW(x) + e, (2)

@ Goal: Design a framework to leverage auxiliary markets while
provably handling structured model shift.
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Online-to-Online (020,,)

The source and target markets operate concurrently; streaming data from
large markets must be incorporated into the pricing decisions of small
markets in real time.

Algorithm 1: CM-TDP-020,

Input: Slredmlng source ddld{(p(” (M, L,r,”)};>1 for k € [K|; streaming target contexts
{Tf hex
~(0)
1 Initialisation: £, -1, T1={1}, g, =0.
2form=1.2.... do // episodes

3 Cumpulef,,.=2'" 1,‘Tr'u: {f'll:"‘yfﬂ‘l|l 71}

// (i) aggregate previous episode’s source data
+{ag) k k) (K

a | 9, —mEor KRR({(p{", 2", ui ) e, keix)-

m
// (ii) debias with previous eplsode s target data

= . =(ag) (@) _(0) _(0)
s | O« Debias(,, A@". =" v Vher. 1)
// For functions MLE or_KRR and Debias, call Algorithm 2 for limear utility (or
Mgorithm 3 for non-parametric utility)

20 fag) =~

6 | Setgn ¢ gm +om.

7 fort € T, do // episode pricing
~(0

8 L Post price fi‘ " h(gf,,’(z,ﬁ") )) observe g,r( " and store data.
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Offline-to-Online (020.)

The firm holds a fixed log of source-market data gathered before the target
market opens, and this static information is used once the target goes live.

Algorithm 4: CM-TDP-020

Input: Offline source market data {(pik),msh.?]:{k’)hcum for k € |K|; feature matrix {:r:") Hen
for the target market

/# #ss%s%s Phase 1: Update with transfer learning ##s¥%s */

~(ng)

1 Call Algorithm ~ or * to calculate the initial aggregated estimate g
data { (", X"yt ) hicpm fork € [K)

2 Apply the price ﬁ{l"’ : h(g('“"(:z'l"’)) and collect data (ﬁ(‘“)' IEE[”« !f}"l),

3 for each episode m = 2,...,mq do

4 Set the length of the m-th episode: £,, := 2™ !

s Call Algorithm  or * to calculate the debiasing estimate ,, using target market data

{0, 2" y ™ e (22w 1 1) and aggregated estimate -a(-n:)v

using entire source market

6 Set
+(0) log) =
O =80 + 0.

0
7 | For cach time t, apply price Y = h(au)(m:"))) and collect data (5", z{"”, y").

/% #xx++4% Phase 2: Update without transfer learning **++s+* */
8 for each m > my + 1 do
9 Set the length of the m-th episode: £, :

0
10 Call Algorithm ” or 3 to calculate E"J using target market data

0) _(0) (0
{(Pi )-"’E )‘yt( ))}.‘(\2"‘ 2gm-1_1).
1 | Foreach time £, apply price and collect data.

Output: Offered price ;T)fm, t>1
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Two Utility Models

Parametric Utility Model
@ Model: Consider a linear model for the mean utility:

vt(k) = xgk) -ﬁ(k) +er, ke {0}U[K] (3)

o Similarity Characterization: The maximum /lp-norm of the
difference between target and source coefficients is bounded:

© _ gk«
kn;?;]l\ﬂ B o < so.

o Estimation: Maximum Likelihood Estimation
Nonparametric Utility Model
@ Model: Utilities in Reproducing kernel Hilbert Space:

v = gW(xy 4ep g™ ey, ke 0U[K], (4)

o Similarity Characterization: The discrepancy between target task
and source task in the RKHS norm is uniformly bounded as

© _ 0 <y
kn;%\lg gk < H.

o Estimation: Kernel Logistic Regression
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Theoretical Results

THM. Regret Bound (020, linear)

Upper Bound:
Regret(T; 7) = O(% logdlog T + solog dlog T).

Lower Bound:

. d d
inf sup Regret(T;7) > a ® log T—|—cho|og; log T,

THM. Regret Bound (020,,, RKHS)
Upper Bound:

_ _2ap 1 2 1
Regret(T; 1) = O (K Zaf1 T2ab71 | Hzar Trm)
Lower Bound:

2a
inf sup Regret(T;7) > C{Kfmﬂ+1 Taar 4 Hzom Tﬁ}.
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Configurations: (i) Identical Markets, (ii) Sparse difference Markets, (iii)
Dense difference Markets

(a) Identical, d =10 (b) Sparse, d =10 (c) Dense, d = 10

(d) Identical, d =10 (e) Sparse, d =10 (f) Dense, d = 10

Figure 1: Cumulative regret across experimental conditions in 0200 with linear (up)
and RKHS (down) utility models.
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o Unified transfer pricing framework under utility shifts.
CM-TDP is the first dynamic pricing framework that allows multiple
source markets whose utilities differ from the target by a structured
shift, working in both Online-to-Online and Offline-to-Online regimes.

o Minimax-optimal guarantees. We establish minimax regret rate
under linear mean utilities and RKHS-smooth utilities.

e Bias-corrected aggregation architecture. Our two-step aggregate
— debias pipeline cleanly connects meta-learning, robust statistics, and
exploration-driven bandits, and can plug in MLE, Lasso, or kernel
ridge as well as black boxes.

o Large empirical gains. Simulations show up to 50 % lower
cumulative regret, 28 % lower standard error and 5x faster learning
relative to single-market learning, with the largest gains in data-scarce
targets under Online-to-Online transfer.
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