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Introduction

Challenge: In Dynamic pricing, new markets suffer from data
scarcity, while mature markets generate abundant logs.
Gap: Existing transfer methods assume identical utilities across
markets, failing under preference shift.
Model: A general random utility model for the market value of the
product is given by

v
(0)
t = g̊ (0)(x (0)

t ) + εt , (1)

In cross-market transfer learning, we observe additional samples from
K sources markets indexed by superscript (k) for k ∈ [K ]:

v
(k)
t = g̊ (k)(x (k)

t ) + εt , (2)

Goal: Design a framework to leverage auxiliary markets while
provably handling structured model shift.
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Online-to-Online (O2Oon)

The source and target markets operate concurrently; streaming data from
large markets must be incorporated into the pricing decisions of small
markets in real time.
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Offline-to-Online (O2Ooff)

The firm holds a fixed log of source-market data gathered before the target
market opens, and this static information is used once the target goes live.
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Two Utility Models

Parametric Utility Model
Model: Consider a linear model for the mean utility:

v
(k)
t = x (k)

t · β
(k) + εt , k ∈ {0} ∪ [K ] (3)

Similarity Characterization: The maximum l0-norm of the
difference between target and source coefficients is bounded:

max
k∈[K ]

‖β(0) − β(k)‖0 ≤ s0.

Estimation: Maximum Likelihood Estimation
Nonparametric Utility Model

Model: Utilities in Reproducing kernel Hilbert Space:

v
(k)
t = g (k)(x (k)

t ) + εt , g (k) ∈ Hk , k ∈ 0 ∪ [K ], (4)

Similarity Characterization: The discrepancy between target task
and source task in the RKHS norm is uniformly bounded as

max
k∈[K ]

‖g (0) − g (k)‖K ≤ H.

Estimation: Kernel Logistic Regression
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Theoretical Results

THM. Regret Bound (O2Oon, linear)
Upper Bound:

Regret(T ;π) = O
( d
K

log d logT + s0 log d logT
)
.

Lower Bound:

inf
π

sup Regret(T ;π) ≥ c1
d

K
logT + c2 s0 log

d

s0
logT ,

THM. Regret Bound (O2Oon, RKHS)
Upper Bound:

Regret(T ;π) = O
(
K−

2αβ
2αβ+1 T

1
2αβ+1 + H

2
2α+1 T

1
2α+1

)
Lower Bound:

inf
π

sup Regret(T ;π) ≥ c
{
K−

2αβ
2αβ+1 T

1
2αβ+1 + H

2
2α+1 T

1
2α+1

}
.
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Experiments

Configurations: (i) Identical Markets, (ii) Sparse difference Markets, (iii)
Dense difference Markets

(a) Identical, d = 10 (b) Sparse, d = 10 (c) Dense, d = 10

(d) Identical, d = 10 (e) Sparse, d = 10 (f) Dense, d = 10

Figure 1: Cumulative regret across experimental conditions in O2Oon with linear (up)
and RKHS (down) utility models.
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Summary

Unified transfer pricing framework under utility shifts.
CM-TDP is the first dynamic pricing framework that allows multiple
source markets whose utilities differ from the target by a structured
shift, working in both Online-to-Online and Offline-to-Online regimes.
Minimax-optimal guarantees. We establish minimax regret rate
under linear mean utilities and RKHS-smooth utilities.
Bias-corrected aggregation architecture. Our two-step aggregate
→ debias pipeline cleanly connects meta-learning, robust statistics, and
exploration-driven bandits, and can plug in MLE, Lasso, or kernel
ridge as well as black boxes.
Large empirical gains. Simulations show up to 50% lower
cumulative regret, 28% lower standard error and 5× faster learning
relative to single-market learning, with the largest gains in data-scarce
targets under Online-to-Online transfer.
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